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Abstract— We present a friction model for the curved contact
area between a deformable object and soft parallel gripper jaws
for grasping posture estimation. We show that the assumption
of a planar contact area leads to an overestimation of the
frictional force and torque, which might cause the object to slip.
We simulate the contact with the Finite Element Method, then
compute the friction wrenches, which are fitted with two limit
surface models: an ellipsoid and a convex 4th-order polynomial.
Despite a slightly higher fitting error, the ellipsoid limit surface
is chosen to compute the grasp quality because of its simplicity.
We compare the limit surfaces of our friction model with
the planar contact model and show the improved accuracy
obtainable with our model. We then apply the presented model
for grasping posture estimation by simulating the contact for
all grasp candidates. We show a grasp quality map (quality of
all grasp candidates) and the best possible grasp location for
several deformable objects.

I. INTRODUCTION

The grasp stability is essential for evaluating the grasping

posture for an object. Hence, the external disturbances that

can be balanced for this posture are often used as quality

metrics. These metrics require accurate contact information,

such as the maximum frictional force and torque. This infor-

mation is especially important for grasping easily breakable

objects or deformable thin-walled bottles, such as plastic

cups. If the applied force becomes too large, the object

might be damaged caused by the grasp, or the content of

an open bottle might spill due to an excessive deformation.

For these objects, gripper fingers with soft pads are widely

used to prevent such damage and to increase the stability

of grasps due to the larger contact area achievable with

deformable jaws. In this paper, we focus on grasp planning

for deformable objects which are grasped with a parallel

gripper equipped with passive soft foams, such as the visuo-

haptic gripper (VH gripper) in [1]–[3]. We simulate the

contact using the Finite Element Method (FEM) and study

the friction model of a non-planar contact area caused by

the soft foam, as shown in Fig. 1. The friction model is then

used to determine grasp quality measures.

One major advantage of the visuo-haptic gripper (VH grip-

per) is that the contact profile can be determined with very

low effort and at very low cost. A camera (either mounted on

the gripper or placed nearby as shown in Fig. 1) observes the

deformation of the foam during the contact. Active contour

models [4] are used to track the deformation of the foam
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Fig. 1: Curved contact area of the visuo-haptic gripper

equipped with soft material jaws.

contour from the images. Then, the pressure distribution is

determined based on a pre-computed deformation model.

Another advantage of the VH gripper is the larger contact

area compared to rigid gripper jaws, which leads to larger

frictional torques. However, the friction model of a non-

planar contact has not been well defined, since the friction

wrenches and the limit surface (LS) are in R
6 and the exact

shape of the LS is difficult to model.

In this paper we propose an extension of the friction model

used for the planar contact to compute the friction wrenches

w ∈ R
6 of the curved contact area. For a specific contact, we

first use the FEM simulation to determine the deformation

of the object and the gripper. The FEM provides the contact

pressure and the area of each finite element on the curved

contact area. We then compute the 6D friction wrenches

of each element and the total wrenches w of the curved

contact area. This is done by sampling different locations of

the center of rotation (COR) of the contact. And for each

location, we determine the direction of the frictional force

for each element. After that, we approximate w and convert

it to a 3D wrench wapp ∈ R
3. The wrenches wapp are fitted



with an ellipsoid proposed by Howe and Cutkosky [5] and a

convex 4th-order polynomial (cvx4thPoly) proposed by Zhou

et al. [6]. In our experiments, we choose the ellipsoid as our

contact model for its simpler geometrical characteristics and

compute the eccentricity parameter en of the ellipsoid for

the grasp score computation.

To find the optimal grasp location for a query object, we

simulate the contact of grasp candidates for the object and

store the eccentricity parameter en for each contact into a

map, referred to as the en map. With the en map and the

known geometry of the object, we compute the grasp quality

metric online using the grasping simulator GraspIt! [7].

We present the friction wrenches for our friction model

and for the planar contact model with respect to the applied

normal force and the curvature of the contact area. We then

compare the results by determining the fitting errors of the

two LS models. Finally, we illustrate the en map and the

corresponding grasp quality map for multiple deformable test

objects based on the ellipsoidal LS model. The location with

the highest score is finally chosen for grasping.

II. RELATED WORK

For friction modeling of planar contacts, Goyal et al. [8]

proposed the so called limit surface (LS), which captures the

relationship between frictional forces, torques and relative

motion. For grasp stability analysis, the LS is essential to

determine whether a slip will occur for a given external

disturbance force and torque pair. Howe and Cutkosky [5]

proposed an ellipsoidal approximation of the LS and intro-

duced the facet effects of the LS caused by the discontinuous

pressure distribution of a contact. Zhou et al. [6] proposed a

convex 4th-oder polynomial force-motion model for planar

sliding based on the concept of maximum work inequality

[9], which increases the accuracy of the LS fitting.

When grasping deformable objects, the shape of the con-

tact area and the pressure distribution are required to compute

the friction and obtain the LS. Ciocarlie et al. [10] use the

Finite Element Method (FEM) to simulate the deformation

of a soft finger which is in contact with a face of a rigid cube.

The maximum frictional force and torque are then computed

to construct an ellipsoidal LS. Finally, they compute the

grasp wrench space (GWS) by linearizing the ellipsoid and

compute the grasp score using the metric proposed by Ferrari

and Canny [11].

Following this work, Ciocarlie et al. [12] studied the

contact between deformable objects and fingers with curved

surfaces. They approximate the local geometry of two con-

tacting bodies to obtain the contact profile based on the elas-

tic contact theory. They assume an elliptical shape contact

area and compute the pressure distribution using the Winkler

foundation model or Hertzian model [13]. The advantage

of this technique is its approximation of the contact profile

and the LS which allows us to compute the grasp score

in real time. However, this method does not work well

for contact with corners or edges as it assumes a planar

elliptical contact area. This work is extended by Tsuji et

al. [14] for grasp planning for a parallel gripper equipped

with a deformable sheet. They approximate the object surface

around the contact point with a quadric surface and estimate

the shape of the planar contact area. The stress distribution is

computed accordingly and used for the LS construction and

grasp score computation. Harada et al. [15] use a similar

approach and consider the gravity of the query object for

the grasp quality metric.

III. THEORETICAL BACKGROUND

A. Friction model for planar contact areas

Frictional forces and torques of a planar contact are

essential for grasp analysis. Here we briefly review the

force-motion model of planar sliding based on the Coulomb

friction model. This force-motion model is also applicable

for the contact of two objects without relative motion, since

the maximum static friction is considered in this paper to be

identical to the sliding friction. For details please refer to [5]

and [8].

For a two-dimensional planar sliding motion, the contact

area can be of arbitrary shape. To compute the friction of

this contact, we need to determine the direction of motion at

each point on the contact surface. The instantaneous motion

of the contact area in the plane can be described as a pure

rotation around a point. In this contact, translation can be

seen as a rotation around a point, which is infinitely far away.

The point is defined as the instantaneous center of rotation

(COR). If the COR location is known, it is straightforward to

calculate the velocity of each point. Howe and Cutkosky [5]

assume a known COR location and formulate the relationship

between friction and the instantaneous motion by adding up

the frictional contribution of each point on the contact area.

As shown in Fig. 2, let A denote the contact area with a

known pressure distribution, where O is the friction-weighted

pressure center and is computed by:

O{x,y} =

∫

A
{x, y}µ(x, y)p(x, y)dA
∫

A
µ(x, y)p(x, y)dA

. (1)

Let us consider an infinitesimal element Ixy with coordinate

[x y]T , pressure pxy and area axy . The vector from O to Ixy
is the torque arm lxy and dxy is the vector from COR to Ixy .

The instantaneous velocity of Ixy is vxy , which is a normal

vector perpendicular to dxy .

The frictional force fxy and torque τxy of the element Ixy
is computed by:

fxy = −µpxyaxyvxy, τxy = fxy × lxy, (2)

where µ is the friction coefficient.

The total frictional force and torque are computed by

integrating over the contact area A:

fA =

(

fAx

fAy

)

=

∫

A

fxy dA, τA =





0
0

τAz



 =

∫

A

τxy dA.

(3)
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Fig. 2: Examples of the instantaneous velocity vxy of the

element Ixy depending on the center of rotation (COR) for

the planar contact model.

The total torque value τA can be treated as a scalar here,

because the torque arm l and the frictional force f are

coplanar.

Different COR positions affect the direction of the instan-

taneous velocity of each small element and thus the friction.

As shown in Fig. 2, there are two example COR locations

COR1 and COR2, where COR1 coincides with the origin O.

The velocity vxy1 and vxy2 of the element Ixy are depend

on COR1 and COR2, respectively. The total torque value

τA is maximum for COR1, since the torque arm l of each

element is perpendicular to the velocity and the frictional

force. When the COR is infinitely far away along the x-axis,

the velocity of each element is along the y-axis, thus fAy
is

maximized.

Howe and Cutkosky [5] showed that (fAx
, fAy

, τAz
) can

be approximated as an ellipsoid. This ellipsoid is called the

limit surface (LS) for this contact. The LS can be used

to determine the stability of the contact. If the external

disturbance force and torque pair lies within the LS, then

a slip will not occur, since the friction of the contact is able

to resist this disturbance.

B. Grasp analysis

The above mentioned friction model can be used to

examine the stability and quality of a grasp. The idea is

to determine the external disturbances that this grasp can

resist. Here we will briefly describe the method to obtain

the classical quality metric of a grasp proposed by Ferarri

and Canny [11].

To describe a contact, the contact force f and torque

τ are usually combined into one variable called wrench

w = [f τ ]T . For a 3D problem, w ∈ R
6. For a contact

i, the process is to first determine the limit surface. Its linear

approximation is usually used in practice to simplify the

problem. For an ellipsoidal limit surface, its approximation

can be obtained by taking the convex hull of m vertices

on its surface [12]. The corresponding friction wrenches

wi1, . . . wim can be computed and transformed into a single

frame of reference. This reference frame is usually chosen

to be the center of mass of the object, as shown in Fig.

1. The total grasp wrench space (GWS) of n contacts is

computed by taking the convex hull of the Minkowski sum

of transformed wrenches:

WL∞ = ConvexHull(⊕n
i=1

{wi1, . . . wim}). (4)

WL∞ is the space of the wrenches that can be applied by

the grasp. Thus, it indicates the external disturbances that can

be resisted with this grasp. To allow the comparison between

different grasps, the magnitude of the normal force of each

contact is limited to 1 for grasp score computation [11]. We

use the volume of WL∞ as the quality metric of a grasp.

IV. FRICTION MODEL FOR CURVED CONTACT AREA

When an object is grasped with soft parallel gripper

jaws, the contact area is typically non-planar. The friction

wrenches are in R
6. Thus, the ellipsoidal limit surface

model proposed by Howe and Cutkosky [5] is not directly

applicable. In the following, we propose a friction model for

the curved contact area in R
6 and compute its approximation

in R
3, such that the existing limit surface models can be used

for stability analysis and grasp planning.

A. Friction wrench computation

To compute the static friction for a non-planar contact

between two bodies, we describe the three-dimensional in-

stantaneous motion of a body as a rotation around a single

axis, instead of a point. This rotation axis is the center of

rotation (COR) in 3D space.

To simplify the problem, we convert the grasp wrench

space (GWS) w ∈ R
6 of contact i into an approximated

wrench wapp ∈ R
3 for the limit surface construction. We

choose wapp = [fxi, fyi, τzi]
T , because fxi, fyi ≫ fzi and

τzi ≫ τxi, τyi in general. The coordinates are shown in

Fig. 1. We analyze the locations of the COR axis, which is

parallel to the zi axis for contact i, such that the maximum

of (fxi, fyi, τzi) can be determined. This is done because

we want to compute the maximum friction of the contact to

analyze the grasp stability. If the COR axis is not parallel to

the zi axis in Fig. 1, then at least one component may not

reach its maximum, since it will be partially shifted to the

remaining axes. The wrench wapp is then approximated by

setting the remaining components in w to 0.

Similar to the LS model for planar contact, we divide

the curved contact area into small elements and compute

the friction for each element by assuming a known COR

location and a pressure distribution, as shown in Fig. 3(a).

In this work, we use the Finite Element Method (FEM) to

simulate the contact between the visuo-haptic gripper and a

deformable object, such as a plastic bottle. As a result from

the FEM simulation, we obtain the contact area and pressure

distribution, which allow us to compute the LS of the contact.

In real applications, the pressure distribution can be obtained

by the deformation of the foam mounted on the gripper or

another tactile sensor.

The FEM divides the curved contact area into rectangular

finite elements. Each element is assumed to be planar. This
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Fig. 3: Example of a curved contact area with origin O and contact normal N . (a): A curved contact area that is devided

into small elements. The shadowed rectangle is element n with origin On and normal nn. (b): An enlarged view of element

n with the projected velocity vnp and the frictional force fn.

method is also applicable for triangular elements. The contact

normal N is defined by the average normal of all elements

that contain the origin. The local contact coordinate system

(x, y, z) is defined such that z‖N , while x is on the plane

perpendicular to z and possibly parallel to the long side of

the foam.

To locate the origin O, we first compute the friction-

weighted center of pressure (COP ) with:

COP{x,y,z} =

∫

A
{x, y, z}µ(x, y, z)p(x, y, z)dA
∫

A
µ(x, y, z)p(x, y, z)dA

, (5)

which is an extension of Eq. 1 in 3D, where µ(x, y, z) is

the friction coefficient and is assumed to be uniform for this

contact.

The COP might not be on the contact surface because

of the curvature. Thus, the origin O is the projection of the

COP onto the contact area A along the contact normal N ,

as shown in Fig. 3(a).

Fig. 3(b) shows the element n extracted from the contact

area A with origin On, normal nn and pressure pn. The

figure also shows an example COR axis, which is parallel to

the contact normal N .

In order to determine the direction of the frictional force

of element n, we need to first determine its velocity vn.

The problem of the curved contact area is that the velocity

vn may not be coplanar with the element plane. Since the

frictional force is restricted to be on the element plane, so

it may not be parallel to the velocity vn. Thus, we compute

the projection of the velocity vn onto the plane, which is

denoted as vnp and set the frictional force to be parallel

to the projected velocity vnp. This is due to the fact that

only the velocity, which is parallel to the plane, affects the

frictional force.

To better explain the algorithm, lets create an auxiliary

plane denoted as Pa, as shown in Fig. 3(b). Plane Pa is

normal to the COR axis and the contact normal N , and

passes through the element center On. Denote the intersec-

tion point of the plane Pa and the COR axis as ICOR, IN as

the intersection point of Pa and the contact normal N . To

calculate the velocity vn for the element n, we first determine

the vector dn, which is from ICOR to On. The velocity vn is

determined by finding a vector, which also lies in the plane

Pa and is perpendicular to dn. Please note that in this case,

vn does not lie in the element plane Pn. Thus, we calculate

the projected velocity vnp of vn onto the element plane Pn.

It is computed by subtracting the component of vn that is

orthogonal to Pn from vn:

vnp = vn −
vn · nn

‖nn‖2
nn, (6)

where nn is the normal of the element plane Pn. The

direction of the frictional force fn is opposite of vnp. After

that, the torque arm ln is determined by the vector from

IN to the element center On. Finally, the friction wrench

wn = [fn, τn]
T is computed by:

fn = [fnx, fny, fnz]
T = −µpnan

vnp

‖vnp‖
, (7)

τn = [τnx, τny, τnz]
T = fn × ln, (8)

where pn and an are the pressure and the area of element

n, respectively.

The total friction wrench w of A is computed by summing

up the wrench of each element. Similar to the planar contact,

when the COR coincides with O, τz reaches its maximum,

since the frictional forces and torque arms are “more perpen-

dicular” than in other cases. Also, when the COR is located

far away along the x axis, fy becomes maximal.

Please note that in this work, the change of the contact

area and the normal pressure caused by the friction wrench

is neglected. This is under the assumption that the influence

of the tangential friction upon the normal pressure is small,

especially when the friction coefficient is less than one [13].

Thus, the normal pressure and the tangential friction can be

treated separately.



B. Limit surface fitting

To describe the relationship between the friction and the

object motion, the limit surface (LS) is widely used. To find

the suitable LS model of the contact, we compute the friction

wrenches with different locations of the center of rotation

(COR) axis . To obtain the locations, we approximate the

curved contact area to a planar rectangle Pr with length a×b
with a ≥ b. The positions of the COR are obtained by evenly

sampling a square Ps with length 10a×10a, where its center

is located at the origin of the contact O.

Then, the approximated wrenches wapp = [fx, fy, τz]
T

are fitted with an ellipsoid or a convex 4th-order polynomial

(cvx4thPoly) [6]. To ensure all 3 components of the friction

wrench have the same unit, Erdmann [16] proposed to

normalize the frictional torque τz by dividing it with the

radius of gyration ρ. Zhou et al. [6] have found that different

values of ρ, such as average edge length or radius of the

minimum enclosing circle lead to similar performance for

the LS construction. Thus, we choose ρ = a for simplicity.

The analysis of the LS fitting error is shown in Sec. VI.

Generally, the error of cvx4thPoly is smaller than that for the

ellipsoidal model. However, the ellipsoid is chosen for our

LS model, because of the simpler geometric characteristics:

we only need to compute the friction wrenches corresponding

to 3 COR locations, which maximize fx, fy and τz , respec-

tively, to construct the ellipsoid. In addition, an ellipsoidal LS

can be easily described with a single variable referred to as

the eccentricity parameter en [12], which will be explained

in the following section.

V. THE ECCENTRICITY PARAMETER MAP AND GRASP

LOCATION ESTIMATION

When the limit surface (LS) of a contact is modeled with

an ellipsoid, the eccentricity parameter en can be used to

describe the relationship between the maximum frictional

force and torque, thus en is essential for grasp analysis.

Following [5] and [10], the frictional constrains based on

the ellipsoidal LS model parameterized with (fx, fy, τz) can

be formulated as :

f2

x

max2(fx)
+

f2

y

max2(fy)
+

τ2z
max2(τz)

≤ 1. (9)

For a planar contact with normal force FN and friction

coefficient µ, denote ft as the tangential frictional force,

where f2

t = f2

x + f2

y . The maximum frictional force is:

max(ft) = max(fx) = max(fy) = µFN . (10)

To better describe the ellipsoidal LS, Howe and Cutkosky

[5] defined the eccentricity parameter en as:

en =
max(τz)

max(ft)
. (11)

The frictional constraints for a planar contact in Eq. 9 can

be formulated as:

f2

x + f2

y +
τ2z
e2n

≤ µ2F 2

N , where en =
max(τz)

µFN

. (12)

Thus, with the pre-computed en, the ellipsoidal LS can be

reconstructed with the semi-principal axes µFN · [1 1 en]
T

for different FN values.

However, for a curved contact area, max(fx) and

max(fy) might not be equal to µFN because of the

curvature. For a precise LS reconstruction for a curved

contact area, the ellipsoidal LS is parametrized with

[max(fx) max(fy) µFNen]
T , where fx, fy, en all depend

on FN , since the curvature of the contact area varies un-

der different magnitude of normal forces. Thus, the values

fx, fy, en for each normal force need to be pre-computed

and stored for the LS reconstruction.

If the required accuracy of the LS is not high, the LS

can be reconstructed with the parameters µFN · [1 1 en]
T

to simplify the process. In this case, the frictional torque

is computed with the curved contact area model, while the

frictional forces are computed with the planar contact model,

which might lead to overestimation of the frictional forces.

In addition, en can be used for grasp score computation.

We simulate the contact between the two-finger visuo-haptic

sensor foam [1], [2] and all grasp candidates of a query

object with the same normal force, then compute and store

the en of each candidate to a map. We refer to this map as

the eccentricity parameter (en) map. The maximum frictional

forces are also stored additionally to increase the grasp score

accuracy in this work. With the known geometry and the en
map of an object, the grasp score can be computed online

with the ellipsoidal LS linearization technique [12] and the

L∞ quality metric [11], without knowing the exact contact

area and pressure distribution.

The grasp quality for all candidates of the query object are

computed and stored to a map, which we refer to as the grasp

quality map. The locations with the highest grasping score

are considered as the best possible choices for grasping.

VI. RESULTS AND EXPERIMENTS

In order to check the wrench difference between a curved

contact model and a planar contact model, we first simulate

the contact between the visuo-haptic gripper (VH gripper) in

Fig. 1 and multiple rigid elliptic cylinders with a fixed semi

axis a and a variable semi axis b with 0.4a ≤ b ≤ 2.5a.

The contact normal is parallel to a. The magnitude and the

direction of the normal force is the same for each simulation

in this experiment. Fig. 4(a) shows the simulation results

obtained with the FEM software ANSYS® [17]. To simplify

the model of the VH gripper, only the two-finger jaws are

modeled for the simulation. Each finger consists of the foam

and a metal sheet to prevent undesired deformations of the

foam. The foam is meshed with hyper-elastic hexahedral

elements of type Hyper86 in ANSYS®. The metal sheet and

the elliptical cylinder are meshed with tetrahedral elements

of type solid187. As shown in Fig. 4(a), the pressure is

evenly applied on the metal sheets of both fingers, such

that the normal forces are parallel to the contact normal.

The contact profile is extracted from the finite elements of

the VH gripper, as shown in Fig. 4(b). The green line is

the contact normal. For each element, the color dot is the



simulated pressure value, the arrow shows the direction of

the computed frictional force based on the curved contact

model, when the COR-axis coincides with the origin O,

indicated with a blue dot. Fig. 4(c) shows the difference

of frictional force and torque between the curved and the

simplified planar contact model, where the x-axis is the

curvature of the contact area. Since the elliptic cylinder is

rigid, the curvature of the contact area is controlled by the

ratio of the two semi axis of the ellipse a and b. Thus, the

curvature equals a/b. This figure shows that the difference

grows with the curvature of the contact area.

Next, we simulate multiple contacts between the VH

gripper and a thin-walled deformable test object for grasp

planning. The geometry of the real object is shown in Fig.

8(a). The 3D model for the FEM simulation is built manually,

for details please refer to [18]. As shown in Fig. 5(a), there

are 70 grasp candidates for the test object. Each contact of

the object and the VH gripper is simulated, where the center

of the VH gripper is located at one grasp candidate and the

contact normal is parallel to the vector from the location of

the grasp candidate to the center axis of the object. The test

object is meshed with thin-shell elements of type SHELL181

in ANSYS®. Fig. 5(a) shows the asymmetric contact area

extracted from the VH gripper located on the grasp candidate

x31 near the neck of the test object, where the normal force

is 3N and the COR-axis coincides with the origin. Fig. 5(b)

shows the space of the friction wrenches for this contact.

The wrenches are obtained by densely sampling the locations

of the COR-axis with the proposed curved contact model

(CCM) and the existing planar contact model (PCM). The

frictional torque is normalized by dividing it by the length

of the contact area such that all 3 components of each

approximated wrench wapp have the same unit. For details

please refer to Sec. IV-B.

As expected, the wrenches of the PCM are larger than the

CCM, since the PCM model does not consider the fact that

the frictional force of each element has to be restricted on

the plane of the element and thus leads to an overestimation

of the friction. Please note that the facets on the surface of

the LS are caused by the discontinuous pressure distribution

from the FEM simulation. For a real contact between the

gripper and the object, the pressure distribution is continuous.

Thus, the facets are neglected by the LS fitting.

Fig. 6(a) and (b) show the fitted LS with the convex 4th-

order polynomial (cvx4thPoly) and the ellipsoidal model of

this contact with fewer wrench data, indicated with red dots.

The code for the LS fitting is provided by Zhou [6]. It is easy

to see that many wrench data points are inside the ellipsoidal

LS, while the most data points are on the surface of the

cvx4thPoly LS. Hence, the ellipsoidal LS has a larger fitting

error than the cvx4thPoly. Fig. 6(c) shows the fitting error

of both LS models with the curved contact model for all 35

grasp locations along the x-axis of the test object.

For the same contact location x31, Fig. 7(a) shows the

normalized maximal frictional force of the curved contact

model (CCM) and the simplified planar contact model (PCM)

with an increasing normal force. We chose the friction

(a) FEM simulation of the contact between an elliptical cylinder and
the visuo-haptic two-finger gripper.
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Fig. 4: Contact simulation between elliptical cylinders with

variable axis length and the two-finger gripper.
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Fig. 6: Fitted limit surfaces for grasp candidate x31 and the fitting error comparison for 35 grasp locations.

coefficient µ = 2. The normalized frictional force and torque

are computed by scaling the normal force to 1 for the grasp

score computation. Hence, the frictional force of the PCM

is constant and the force of the CCM varies depending on

the curvature and the shape of the contact area. Fig. 7(b)

shows the normalized maximal frictional torque, which is

normalized by dividing it by the length of the maximum

contact area of all contacts. The torque is normalized this

way, such that it has same unit as the force for grasp score

computation. The second reason is that the frictional torque

caused by different normal forces becomes comparable. It

grows with enlarged magnitude of the normal force because

of the increased contact area.

Fig. 7 (c) and (d) show the eccentricity parameter en
and the normalized grasp score, respectively. The score is

computed based on frictional forces, en and the ellipsoidal

LS model, as described in Sec.V.

Fig. 8 shows the eccentricity parameter en map and the

grasp quality map for two test objects. For the en maps, the

largest en values are not at the widest part of the object. This

is because in both cases, the contact area at the widest part

has a bump, such that the pressure is smaller than for other

locations. For grasp score computation, the object length

along the x, y, z direction is scaled to 1, such that the total

torque caused by the contact does not depend on the object’s

size. The locations with highest grasp score are chosen as

the best possible grasping locations.

VII. CONCLUSION AND OUTLOOK

We presented a friction model for non-planar contacts be-

tween an object and a two-finger gripper, which is equipped

with soft material jaws. A Finite Element Method based

simulation is used to obtain the contact profile. We then

computed and fitted the friction wrenches with the ellipsoidal

and the convex 4th-order polynomial (cvx4thPoly) model.

The former is chosen and its eccentricity parameter of the

contact with each grasp candidate for the query object is

pre-computed and stored in the eccentricity parameter map

for grasp score computation. The optimal grasping posture

of the object is obtained by selecting the highest score.
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Fig. 7: Frictions, en and grasp scores of the curved contact

and the simplified planar contact model with increased

normal force for the grasp candidate x31.
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(d) Object 2
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Fig. 8: Eccentricity parameter map and grasp score map of

two test objects.

In future work, we will use the convex 4th-order poly-

nomial as the limit surface (LS) model and use it for

the evaluation of the grasp quality. We will explore the

eccentricity parameter of this model and the relationship of

the LS depending on the object shape and material properties,

such as Young’s modulus and passions ratio, such that the

LS of each contact can be computed without simulation.

Furthermore, we will combine other quality metrics of grasp

planning for deformable objects, such as considering the

stiffness of the objects at the grasp locations and possible

disturbance wrenches such as the gravity.
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