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Learning-Based Modular Task-Oriented Grasp Stability Assessment

Jingyi Xu, Amit Bhardwaj, Ge Sun, Tamay Aykut, Nicolas Alt, Mojtaba Karimi, and Eckehard Steinbach

Abstract— Assessing grasp stability is essential to prevent Tas“ Ho'd'”g

the failure of robotic manipulation tasks due to sensory data
Ty ‘ Trans. along' axns‘
‘ Trans. alond ams‘
K I Trans. alongtaxis

and object uncertainties. Learning-based approaches are widely
Rot. around -axis

deployed to infer the success of a grasp. Typically, the under-
lying model used to estimate the grasp stability is trained for a
speci ¢ task, such as lifting, hand-over, or pouring. Since every
task has individual stability demands, it is important to adapt
the trained model to new manipulation actions. If the same
trained model is directly applied to a new task, unnecessary
grasp adaptations might be triggered, or in the worst case, the
manipulation might fail.

Task 2
Pouring

To address this issue, we divide the manipulation task used TaSkZ ‘ Rot. around -axis ‘
for training into seven sub-tasks, de ned as modular tasks. We 4 -
deploy a learning-based approach and assess the stability for & y —_——
each modular task separately. We further propose analytical B a ‘ Rot. arounds-axis ‘

features to reduce the dimensionality and the redundancy of the

tactile sensor readings. A main task can thereby be represented 4 1. \We assess grasp stability for seven modular tasks: the
as a sequence of relevant modular tasks. The stability prediction

of the main task is computed based on the inferred success holding task and six motion tasks. The holding task predicts
labels of the modular tasks. Our experimental evaluation shows Whether a fragile object will be damaged or the content will
that the proposed feature set lowers the prediction error spill for the planned grasp force. New manipulation tasks
up to 5.69% compared to other sets used in state-of-the-art can be exibly represented as sequences of modular tasks.

methods. Robotic experiments demonstrate that our modular 1y, example tasks are depicted. The lifting task includes the
task-oriented stability assessment avoids unnecessary grasp

force adaptations and regrasps for various manipulation tasks. holding task and a tra_nslation along tbepds. The pouri_ng
task includes the holding task, a translation alongztexis

| INTRODUCTION and a rotation around the-axis.

Intelligent robots should be able to operate in unstructuremben container caused by the deformation. Minimum grasp
environments with partially unknown objects. The sensorforce should therefore be used to manipulate such objects.
data and object uncertainties often lead to failure of manipu- Assessing grasp stability for different manipulation tasks
lation tasks. Hence, it is essential to predict the grasp stability studied in [1]-[6]. Typically, the success label of a grasp
prior to a manipulation attempt. The stability is affecteds collected by moving the arm according to one or several
by various properties of the object, such as weight, centgre-de ned tasks, like lifting, hand-over, or pouring. The un-
of gravity, material properties etc. Analytical approaches amgerlying model of the grasp stability will then be trained and
hence suboptimal to infer grasp stability in unstructured envialidated with the same tasks. The collected data and trained
ronments, since they typically require complete knowledge afnderlying model are only suitable for speci c actions that
the object and its contact with the end effector. To cope witare used in training. Adjusting the trained model to new
such uncertainties, learning-based approaches are generatlgnipulation tasks remains a challenge. Directly applying
applied to estimate grasp stability. the model to a different task may cause unnecessary grasp

The stability of a grasp highly depends on the speci mdaptations or a failure of the action.
manipulation task, since each task comes with different To address this issue, we propose a modular task-oriented
challenges. For instance, a pick-and-place task is likely @rasp stability assessment. A manipulation task can be di-
cause object sliding, while a pouring task possibly causes inided into several sub-tasks, de ned as modular tasks in
hand rotations. Moreover, manipulating deformable fragil¢he remainder. They can be exibly combined to represent
objects or open containers is more dif cult than handlingnew tasks. We de ne seven modular tasks: a holding task
rigid objects. It is further important to not damage the objecand six motion tasks, as illustrated in Fig. 1. The holding
and to avoid undesired effects such as content spilling of dask infers whether a fragile object will be damaged or the

content will spill from a plastic container with an open
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motion. In general, a manipulation can be considered aspaedictions. The limitations of this approach include the dif-
trajectory or a target pose of the end effector, while theculty of formulating the disturbance wrenches for dynamic
object is safely grasped during the movement. Thereforer complicated tasks.
a manipulation task can be considered as a task sequencor learning-based grasp stability assessment, different
of the modular tasks followed by the grasp. Fig. 1 showhand-crafted features are extracted from the tactile sensor
an example pouring task, which can be considered as a tagladings to reduce the high dimensionality and redundancy,
sequence of lifting (a translation along thexis) and @0  such as k-means clustering applied in [3], principle com-
rotation around thex-axis. ponents analysis (PCA) in [4], [8], and image moments in
For the proposed approach, grasp stability for each mod{g], [2], [5], [9]-[11]. Laaksonen et al. [12] evaluate the
lar task is assessed independently. During the training phagerformance of various features extracted from the tactile
various objects are grasped with two approach directions fegadings and machine learning methods in determining the
the gripper at several locations spread vertically along thgrasp stability. Recently, unsupervised learning [6] or deep
object. We consider the grasping position, object deformareural networks [13], [14] are applied to estimate the grasp
bility, and the tactile sensor readings to infer the stability. Watability without hand-crafted features.
propose a new approach to reduce the high dimensionality Different manipulation tasks are considered for labeling
and redundancy of the tactile sensor readings. Analyticghe grasp stability, such as lifting [3], [6], [10], [13], [15],
features are extracted from the readings, including the contaifting with accelerations and decelerations [14], lift and
area, the pressure-weighted friction center, the friction, andtate[ 120 ;+120 ] around the approach vector [2], [12],
the work. A decision forest is applied as a classi er antr rotate +90 around thex;y-axis, wherez-axis is the
trained for each task independently. direction of the lift [12]. Bekiroglu et al. [1] integrate the
To infer the grasp stability for a main manipulation tasktask-dependency with grasp stability estimation. A Bayesian
the desired gripper pose for the task will rst be analyzednetwork is used to model the conditional relations between
whether it can be reached through a sequence of the motithe sensory streams and three tasks including a hand-over
tasks. If all tasks within the chosen sequence and the holdingsk (parallel transportation), a pouring taglo ( rotation),
task can succeed, the manipulation task is estimated to Aad a dish washing task§0 rotation).
successful. The relevance of the modular tasks can be furtherro our knowledge, no related work has provided an
improved when the manipulation task is known prior to thextensive evaluation of the grasp stability for all 6D trans-
grasp assessment (e.g. in an industry environment) or h@sional and rotational moving actions and how the stability
a human in the loop (e.g. in a tele-operation scenario). F@s affected when manipulating deformable, fragile objects or
instance, when the objects to be manipulated are deformalggen containers. Furthermore, how to adapt the trained model
and non-fragile, such as sponges or soft toys, the holding tagkthe stability for speci ¢ tasks to new manipulation tasks
can be removed from the task sequence and the predictings not been attempted yet. The consequences of applying
accuracy can be further improved. the same model to new tasks should be analyzed. We
We present an evaluation of the trained model for eaghropose grasp stability assessment for seven modular tasks
modular task. We show that with our proposed featurgnd provide the exibility to estimate the stability for new
set, a higher prediction accuracy can be achieved for sissks by representing them as sequences of modular tasks.
of seven modular tasks. We further compare the graspinthe proposed approach guides a grasping and manipulation
and manipulation process with and without considering thgrocess with better time and energy ef ciency.
modular tasks. Experimental evaluation shows that much less
grasp adaptation steps are required with the proposed method 1. PROPOSED APPROACH
to successfully execute the manipulation task.
Our contributions are summarized as follows:
We propose a modular task-oriented grasp stability
assessment, where the trained underlying models can
be exibly adapted to different manipulation tasks.
We propose a combination of analytical features ex-
tracted from the tactile sensor readings to reduce the
data redundancy.

First, we describe the notation used in this paper:
T = fThowding T, T1, 3 T1, 3 Try s TR, » TR, @ dENOtES the
task space for seven modular tasks: the holding task and
the six motion tasks.
S= fS+;Sgg denotes the sequence of motion tasks for
a main manipulation task.
R = fR s, ;Rs; g denotes the relevant modular tasks
for the sequencéS t; Spo.

Il. RELATED WORK F=f(H%;D¥;X ®)gk=1..n denotes a feature set with

Grasp stability estimation using tactile sensor readings can N observations, where

be divided into analytical and learning-based approaches. For — H¥ denotes the grasping position in the object-

analytical ones, Krug et al. [7] predict the grasp stability centered coordinate system.

for a lifting task based on the grasp wrench space. The — DK denotes the object deformation.

effect of uncertainties including object pose, weight and — XX = fCk;pk;f¥;-;wkg denotes the analytical
friction coef cient is evaluated. Conservative approximation features extracted from the tactile sensor readings,

of object properties is recommended to avoid false positive including the contact area, the friction-weighted pres-



sure center, the estimated friction, and the workvhered is the deformation of the object caused by the grasp
performed by a grasp nger. force.

A. Analytical features B. Grasp stability assessment for modular tasks

Here we describe the analytical features extracted from We divide the task for training into modular tasks, such
the tactile sensor readings. The feature sets used for tht new manipulation tasks can be assessed without rec-
classi cation are described in Section IV-C. ollecting the data or retraining the underlying model. We

In analytical approaches, friction of a contact is constantigle ne seven modular tasks, which consist of the holding task
analyzed to build the grasp wrench space (GWS), wheand six motion tasks, i.€lr,; Tr,; Tr,; Tr,; Tr,; Tr,- The
its volume is a classical quality metric of a grasp [16]task Thouing infers whether holding a deformable and fragile
[17]. The work is applied as a quality metric for graspingobject will succeed with a planned grasp force.
deformable objects [18]. Therefore, we consider them as The six motion tasks represent the six degrees of freedom
features to analyze grasp stability. Here, we brie y introducef the object movement. The de nexd,y;z-axes for the
the computation for the friction-weighted pressure center, th@aotion tasks coincide with the gripper's coordinate system,
maximal possible friction [19], [20], and the work performedas shown in Fig. 1. Thg-axis is perpendicular to the tactile
by the grasp nger. sensor, which represents the direction of the grasp force.

For a taxelty, from a tactile sensor reading with an indexIn this work, only grasps from the side are considered.
[x;y]", we denote xy as the friction coef cient, 5, as the This means that the initiad-axis of the gripper's coordinate
pressure valuegy, as the area of the taxed,= [cx;cy]T as system is parallel to the direction of gravity.

the center coordinate of the taxg . The coordinate system for the modular tasks is selected
For a contact are@, the friction-weighted pressure centerbased on their different stability demands. For instance, the
p =[px; py] is computed by: frictional force is required to compensate the gravity for
R R all the translational movements. However, the acceleration
Dy = gX v xy dc - gy oy dc, ) along they-axis for the taskTy, can be provided by the
c xy xydC ' c xy xydC ' grasp force, while the acceleration along ixaxis needs to

be provided by the frictional force. Therefore, the task
is more demanding thafiy,, when the magnitude of the
acceleration along the two axes is the same. For a rotation

The maximal possible frictional force,y and torque yy
of a taxelty, is computed by:

fay = xy ayaxy, v = Ty by around they-axis, the gravitational torque of the object
ith 1. = 2+ 5. (2)  should be compensated with the frictional torque, while it
with by = (pc 6)?+(py  &)% can be balanced by the torque of the grasp force for a rotation

In practical experiments, it is dif cult to accurately esti- around thex-axis. The task, is hence expected to be more
mate the friction coef cient. Inspired by [7], we assume adif cult than Tg, .
Coulomb friction model and use a conservatively approx- 10 estimate the grasp stability, we use the random forest
imated friction coefcient~y = 0:45 based on the table classi er [23], which is trained separately for each modular
of frictional coef cients [21]. Detailed friction sensitivity task. The out-of-bag (OOB) data is utilized to test the
analysis for the grasp quality can be found in [22]. performance of the classier and to estimate the feature
The approximated maximal frictional foréeand torque~  IMmportance.

of the tactile sensor reading with si%g S, are computed ~ Grasp stability assessment for main tasks

by: A manipulation task can be considered in general as a
Bx Yy trajectory or a target pose of the end effector. In this work,
= ~y xy Ay we de ne a main task as a pose (position and orientation)
x=1 y=1 3) of the gripper. The object will be rst transported to a target
¥x Wy position without possibly spilling the content. A rotation is
~= ~y xy axy Ixy then followed to reach a target orientation.
x=1 y=1 The target pose can be reached with a sequence of modular
The contact are€ is computed by: tasks. An object can be transported to a target postiorr
( [dy,, ; dyy ;dz, 17 in the world coordinate system through
oo Xx Ry Gy . with Gy = @y, if xy >0 @ three sequenceSy, , ., as depicted in Fig. 2(a).
x=1 y=1 Gy =0, else. S, = fdg, Tr, 0k T, 50y, Tqu;
The_am(_)unt of workw performed by a grasp nger on  Sg, = fd,, Tr,;(90 )Tk, d2, + d2, Tr,0;
the object is computed by: q — 6)
B % ST3 = fdzw TTZ ; ZTRZ ; dxw + dYW TTX g,
W= By 0 ) with , = atan(dyvv );
x=1 y=1 X w



The main task will be estimated to be successful, if the
following conditions hold:
1. The desired positiomt and orientationdg can be
reached through a sequence of the six motion tasks
fS T:SR g.
2. Thoiding and all the relevant motion taskR s, ;Rs. g
of the chosen sequence are inferred to succeed.

Moreover, the relevance of the modular tasks may be
TeN_—h , , further improved with human hints. For instance, in an
Rsr.; (T, T T, } Rst‘.": {TTTRTT} Ren, = (T, T, T} industry environment or a tele-operation scenario, the human
operator can remove the holding task when the objects are
deformable and non-fragile, such as sponges or soft toys.
Tr. : The false negatives can thereby be further reduced and

: . unnecessary grasp adaptations can be avoided.

IV. DATA ACQUISITION
- e A. Hardware setup

dg,

1#(/1,#20
O,

(a) Three sequences of modular tasks to reach a target podition

Sr, |

The hardware setup used for the data acquisition is shown
in Fig. 3. We use a Schunk parallel gripper, which is
mounted on a KUKA lightweight robot arm. We attach an
Intel®RealSens?! SR300 RGBD camera on top of the
L s, gripper to localize the object and to estimate the object
- dr, size directly from the captured point cloud. We apply the

statistical outlier removal from the Point Cloud Library
Rsn, = {Tr.. Tr. } (PCL) [24] to remove noise. A Weiss Robotics WTS tactile

(b) Sequences of modular tasks to reach two target orientationssensor [25] withl4 6 taxels is mounted on one gripper

dr,;dr, fora pouring task. nger, where the size of each taxel is 3.4 mm3.4 mm. In
Fig. 2: Example sequences of modular tasks to (a): reach@gdition, we cover both ngers with a thin layer of rubber
target positiordr , (b): pour liquid within a target region. The Sheet to smooth the surface of the tactile sensor and to
relevant modular tasks to reach the target are summarizé¥$rease the grasp stability.
below each sequence.
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B. Data collection

where the multiplication is de ned as the transIation/rotatiortlh we d(;zscnrt?evthcta f]rafrf) strrategix tol Co'l?(;t datr?c'j |tnhclud:ng
in the direction of the corresponding modular task. € approach veclors, the grasping locations, a € grasp

) ) forces. To reduce the space of possible grasping postures, the
If O s Gy Gz 6 O, the relevant modular task@s, object shape can be represented with shape primitives [26],

for th di i =1;2;3 are: i . i . A

or the corresponding sequenge ;| oo ae [27]. In this work, we estimate the three-dimensional object
Rsr, = fTr,;Tr i Tr, G size from the point cloud and approximate it with a cuboid.
Rs,, = fT+1,;Tr,; T1, 0 (7) When collecting data for each object, we use two approach
Rst = fTr,; T, Tr. O directionse, and&,, which are perpendicular to the planes

of both sides of the cuboid, respectively. For each approach

A rotation task is followed when the transportation taSlﬁirection' N¢ locations are equa”y Spread Vertica”y a|ong
is executed. A desired orientatiak =[ x; y; ] canbe the object.

reached through three movements, where each of them is arg collect data for each object, we select a setNgf
rotation around one of thg;y;z-axes. Thereforedr can grasping forces = fFy;:::; Fn. g to squeeze each grasp
be reached through the task sequeBge location. Each object has an individual set Nt grasp
@8) forces. However, the ratio between each grasp force and
the mass of the object is a constant over My} objects,
Partial terms ofdr can be zero for different rotation tasks,where the mass is estimated by the volume of the cuboid
e.g. to pour liquid from a container for a target pouringmultiplied by the water density. This implies that for the
region. Two desired orientationdr, = [0; y,; 2,]" and th object with the mass', the set of grasp forces/ with

Sr="F :Tr,: yTr,: x TR, T

dr, = [ x,:0; 2,]" are typically used for such tasks, asj =1::::;Ng is computed by:

illustrated in Fig. 2(b). The sequenc8g,., and the relevant Ei

modular task}'s, . to reach the orientations are: - [i8i=1;; No; where ; are constants (10)
i ml 1 LR | 1

Sri = f 2 TR, yi TR, G Rse, = TR, 1 TR, G; g) The grasp forces are determined such that the classi er for
Sr, = f 2,TrR,, x, TR, G Rsg, = TR, TR, O grasp stability is invariant to the object weight. The equally
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Fig. 3: Our hardware setup includes a parallel gripper, a

RGBD camera, and a tactile sensor, which provides a6l4 Fig. 4: Selected objects for the experiments, including r|g|d

2D pressure array. objects, plastic cups, non-fragile objects, and plastic bottles.
The bottles with open and close states are marked with a

scaled forces are used for force adaptation as well. Wh?ﬁar' The dashed box marks the objects for testing.

a grasp is predicted to be unstable, the force with the next . ) ) .
larger scale will be applied. extracted from the tactile sensor readings are described in

Finally, when the gripper has reached a grasp location, th%ac; ”,"A' )
ngers are closed until the planned grasp force is applied. Similar to [2], we normalize the features to zero-mean and
The data including the grasp location, object deformation ariit Standard deviation, with the exception of the grasping
the tactile sensor readings are recorded prior to the executifftfation and the friction-weighted pressure center, since they
of each modular task. have a xed range. o , _

To label the grasp data, the six motion tasks are evaluatedOther met_hods f‘?r d|men3|onall_ty TEdUCt'On of the tactlle_
separately by moving the arm accordantly with a maximuriensor reao_llngs_ exist, such as_pr|n0|pal component gnalyas
speed after reaching the planned grasp. However, the objecki=?) applied in [4] and the image moments applied in
rst lifted along the z-axis prior to each movement, such thatd]: [2, [3], [9]-[11]. We compare _the prppc_)sed analytical
no support-force acts on the object during the manipulatioffatures to these two methods. Eight principal components
Each motion task has an individual moving range due to tHdl© used In the experiments, which explaln 8% of the
limited workspace, where the translation along thg-axes data. The image moments,q for the tactile sensor readings
are within[ 0:5m; 0:5m], the range for lifting the object &€ computed by:

is [0:0 m; 0:7 m]. The rotation around the; z-axes is within Wi Wy
[ 90 ;90 ], while the range of the rotation around thexis Mpq = xPyd (12)
is [0;90 ]. x=1y=1

The taskThoiding Uses the data with a grasp force to prediciye yse the image moments up to order two, which means

the success for the force with the next larger scale in the S§J+ g) 2 f 0; 1; 2g. Therefore, there are six moments in total.
fF1;:::; Fne 9. Therefore, the set of grasp forces for the o

Tholding 1S fFo; F1;:::1;Fne 10, WwhereFg = 0:5 Fy. V. EXPERIMENTS AND RESULTS
A. Experimental setup

We evaluate two aspects of the proposed approach: the
The features used in this work are the grasping location classi cation performance for each modular task with the
the object deformatio>, and analytical features extractedproposed feature set and the prediction result for the main
from the tactile sensor readings. tasks with and without dividing the training task into modular

The grasping locatioH ¥ of the observatiok is computed ones.
by the center location of two ngertips in the object-centered We select 21 objects for the experiment, as summarized in
coordinate system and normalized by dividing it by the objedtig. 4, including rigid objects, plastic cups, plastic bottles,
height, such that it becomes invariant to the object scale. and deformable non-fragile objects. The bottles that have

The object deformatiorD¥ of the k-th observation is two states, open and closed, are marked with a star in Fig.
computed by: 4. The plastic cups and bottles are lled with liquid, which
LY LE are covered with a plastic material on the top during the
Tk 1) experiment, such that the liquid is able to over ow, but

will not destroy the electrical devices. The holding task

where L¥ is the start grasp length of the gripper and ids considered successful, when the bottles are closed. It is
recorded when both ngers and the object are just in contadbeled as a failure, when the objects are damaged or the
LK is the end grasp length when the contact force reachdiquid over ows with a planned grasp force.
the planned force. The deformation is normalized by dividing Two grasp forces are selected for the experiment. The
it by LK, since it should be relative to the original length ofratios 1; » between each force and the estimated mass of
the object at this location. The proposed analytical featureke object are 10 and 60, which are determined based on

C. Feature representation
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(c) The rotational motion tasks.
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(a) The holding task.

Fig. 5: The out-of-bag (OOB) error for ve sets of features for seven modular tasks. Feature set 5 (proposed) achieves the
lowest OOB error for all tasks. Large improvements can be found for translational modular tasks and g, task

(b) The translational motion tasks.

TABLE I: Comparison of the prediction error for seven modular tasks and the average error for all tasks.

Tholding TTX TTy TTz TR TRy TRz All 7 Tasks
mean std mean std mean std mean std mean std mean std mean std mean
Set 3 0.4 0.370 | 0.188 | 0.132 | 0.189 | 0.136 | 0.219 | 0.160 | 0.225 | 0.100 | 0.274 | 0.285 | 0.181 | 0.144 0.2394
Set4 | 0.370 | 0.299 | 0.200 | 0.146 | 0.202 | 0.129 | 0.224 | 0.148 | 0.280 | 0.110 | 0.320 | 0.267 | 0.177 | 0.122 0.2533
Set5| 0.410 | 0.393 | 0.178 | 0.151 | 0.135| 0.129 | 0.166 | 0.150 | 0.160 | 0.119 | 0.175| 0.101 | 0.151 | 0.132 0.1964

an overestimated ( 1) and an underestimated (0:16)

error for all the tasks. Large improvements can be found for

friction coef cient. Each object is grasped with two approacttranslational modular taskgr, ; Tr, ; Tr, and the tasKg, .
vectors. For each approach vector, 6-12 locations are graspeg\ext, we select 13 objects for training and 8 for testing
depending on the height of the object. Each location ig compare the feature sets 3-5 in Table Il. The objects
grasped with two forces for each of the motion tasks anghr testing are marked with a dashed box in Fig. 4. Table |
three forces for the holding task, where the raiofor the  symmarizes the mean and the standard deviation (std) of the
smallest forceF is 5. This force is used to predict whetherpregiction error for each modular task and the average error
the holding task will succeed when the grasp fofgewith  for gl tasks. We are able to achieve a prediction accuracy
the ratio , = 10 is applied. The grasp data for the plasticof 80.36% with the proposed features extracted from the
containers, that are marked with a star in Fig. 4, are collectqfctile sensor readings. The prediction error is lowered by up
twice for its open and closed state. to 5.69% compared to other feature sets. The error for the
B. Prediction results for modular tasks holding task is high compared to other tasks. In particular,

To infer the success of modular tasks, we train 100§'€ false negatives of the pink cup (a soft toy) in Fig. 4 is
decision trees for each task. We compare the proposéQO%’ due to the excessive deformation caused by the grasp.

analytical features extracted from the tactile sensor reading&nen manipulating such objects, a prior-knowledge about
with features based on principle components and ima hether th_e obje_ct is fra_glle, can av_0|d the false negatives.
moments as introduced in Section IV-C. The forests ar he experiment is described in Section V-C.
trained with the data of all 21 objects and we nd the Finally, we analyze the importance of each proposed
prediction error over the out-of-bag (OOB) data, which ideature for two selected modular tasks in Fig. 6(a) and
de ned as OOB error in this work. (b). The importance is measured by the increment of the
Table Il summarized the ve combinations of features thaprediction error, when permuting the values of each feature.
are evaluated in our experiments. The object deformation carries a high importance for the
) . holding task, as shown in Fig. 6(a). The wovk is the
TABLE Il: Considered f_eature sets for the OOB error COM5econd most important feature, since it indirectly measures
parison. Feature set 5 is proposed. the object deformation. Fig. 6(b) shows that the grasping
location is essential for the lifting taskr,. The friction-

Feature set| Basic features| Tactile sensor readings . . A
1 A i weighted pressure centpron they-axis py is important for
2 H D 1 the task as well, since it encodes the object local geometry.
3 H.D 6 image moments Two grasp examples are illustrated in Fig. 6(c) and (d) with
g E:g 8 p”ncc;'slﬁﬁlmvsonems an enlarged view of each contact and the corresponding

tactile sensor reading. Fig. 6(c) is a successful grasp for a

lifting task while Fig. 6(d) fails. The pressure center in Fig.
The OOB error for the seven modular tasks is showB(c) is on the upper part of the reading, which indicates a

in Fig. 5. The proposed feature set yields a lower OOBower value ofpy. It implies that the contact area of the
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(2) Tholding (b) Ty, (c) Successful grasp for ther, .  (d) Failed grasp for thdT, .
Fig. 6: Importance plot of features for (a) the modular tdskaing and (b) the lifting taskTr,. The vertical locatiorpy
of the friction-weighted pressure center encodes object local geometry and therefore carries a high importandg for the

Fig. (c) and (d) show a successful and a failed grasp foiT{hewith an enlarged view of the contact and the tactile sensor
readings. If the center is on the upper part of the tactile image, the lift-up task is likely to succeed.
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(a) Manipulation tasks. (b) Grasp processes without modular taskg) Grasp processes with modular tasks (proposed).

Fig. 7: Grasp processes for three example manipulation tasks. The considered sequences of modSar Saskan be

found in Fig. 2. With the proposed method, much less grasp adaptations are required to successfully execute the manipulation

tasks, as depicted in (c). Note that for the last main tagkaing is predicted to fail for all grasp locations and forces due

to the excessive deformation. With a prior-knowledge that the object is non-fragile, it can be successfully manipulated with

the proposed method, while the manipulation fails in (b) after all grasp candidates are attempted.

object is wider on the upper part than on the lower parnew manipulation task is unknown. A preliminary planner
Therefore, it is likely that there is a support structure abovis applied to demonstrate the difference. The object will
the object part that is in contact with the gripper when thée grasped starting the lowest location among the grasp
object is lifted. candidates. If the grasp for the main task is predicted to
be unsuccessful, a grasp force adaptation will be triggered
with a larger force ( = 60) used in training. If the task
We infer the success of the main manipulation tasks ang further inferred to fail, a higher location will be selected
the paths for the task execution based on the predictigor a regrasp. The process will be repeated until a feasible
results of the modular tasks. We compare the manipulatiqjrasp location is detected or all grasp locations are predicted
process of the proposed approach with the case, whatgfail. The results for three example manipulation tasks are
the model for stability assessment is trained for a xedllustrated in Fig. 7, where the target pose of each task is
task. In the latter case, the training task is considered @asanually de ned. Without considering modular tasks, the
a sequence of all seven tasks. The success label will orfyediction of the success will only be true for the main task,
be true if the whole task sequence can be successfuiithe whole task sequence can succeed, i.e. all modular tasks

executed. Such conservative training process can be expecigd inferred to be successful. Robotic experiments show that
to avoid false positives and a failure of the action, when the

C. Assessing grasp stability for main tasks
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