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Abstract— Assessing grasp stability is essential to prevent
the failure of robotic manipulation tasks due to sensory data
and object uncertainties. Learning-based approaches are widely
deployed to infer the success of a grasp. Typically, the under-
lying model used to estimate the grasp stability is trained for a
speci�c task, such as lifting, hand-over, or pouring. Since every
task has individual stability demands, it is important to adapt
the trained model to new manipulation actions. If the same
trained model is directly applied to a new task, unnecessary
grasp adaptations might be triggered, or in the worst case, the
manipulation might fail.

To address this issue, we divide the manipulation task used
for training into seven sub-tasks, de�ned as modular tasks. We
deploy a learning-based approach and assess the stability for
each modular task separately. We further propose analytical
features to reduce the dimensionality and the redundancy of the
tactile sensor readings. A main task can thereby be represented
as a sequence of relevant modular tasks. The stability prediction
of the main task is computed based on the inferred success
labels of the modular tasks. Our experimental evaluation shows
that the proposed feature set lowers the prediction error
up to 5.69% compared to other sets used in state-of-the-art
methods. Robotic experiments demonstrate that our modular
task-oriented stability assessment avoids unnecessary grasp
force adaptations and regrasps for various manipulation tasks.

I. INTRODUCTION

Intelligent robots should be able to operate in unstructured
environments with partially unknown objects. The sensory
data and object uncertainties often lead to failure of manipu-
lation tasks. Hence, it is essential to predict the grasp stability
prior to a manipulation attempt. The stability is affected
by various properties of the object, such as weight, center
of gravity, material properties etc. Analytical approaches are
hence suboptimal to infer grasp stability in unstructured envi-
ronments, since they typically require complete knowledge of
the object and its contact with the end effector. To cope with
such uncertainties, learning-based approaches are generally
applied to estimate grasp stability.

The stability of a grasp highly depends on the speci�c
manipulation task, since each task comes with different
challenges. For instance, a pick-and-place task is likely to
cause object sliding, while a pouring task possibly causes in-
hand rotations. Moreover, manipulating deformable fragile
objects or open containers is more dif�cult than handling
rigid objects. It is further important to not damage the object
and to avoid undesired effects such as content spilling of an
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Fig. 1: We assess grasp stability for seven modular tasks: the
holding task and six motion tasks. The holding task predicts
whether a fragile object will be damaged or the content will
spill for the planned grasp force. New manipulation tasks
can be �exibly represented as sequences of modular tasks.
Two example tasks are depicted. The lifting task includes the
holding task and a translation along thez-axis. The pouring
task includes the holding task, a translation along thez-axis
and a rotation around thex-axis.

open container caused by the deformation. Minimum grasp
force should therefore be used to manipulate such objects.

Assessing grasp stability for different manipulation tasks
is studied in [1]–[6]. Typically, the success label of a grasp
is collected by moving the arm according to one or several
pre-de�ned tasks, like lifting, hand-over, or pouring. The un-
derlying model of the grasp stability will then be trained and
validated with the same tasks. The collected data and trained
underlying model are only suitable for speci�c actions that
are used in training. Adjusting the trained model to new
manipulation tasks remains a challenge. Directly applying
the model to a different task may cause unnecessary grasp
adaptations or a failure of the action.

To address this issue, we propose a modular task-oriented
grasp stability assessment. A manipulation task can be di-
vided into several sub-tasks, de�ned as modular tasks in
the remainder. They can be �exibly combined to represent
new tasks. We de�ne seven modular tasks: a holding task
and six motion tasks, as illustrated in Fig. 1. The holding
task infers whether a fragile object will be damaged or the
content will spill from a plastic container with an open
lid. The six motion tasks are the three-dimensional transla-
tional/rotational movements of the gripper along/around the
x; y; z-axes, respectively. Each of them estimates the grasp
stability for the object manipulation with the corresponding



motion. In general, a manipulation can be considered as a
trajectory or a target pose of the end effector, while the
object is safely grasped during the movement. Therefore,
a manipulation task can be considered as a task sequence
of the modular tasks followed by the grasp. Fig. 1 shows
an example pouring task, which can be considered as a task
sequence of lifting (a translation along thez-axis) and a90�

rotation around thex-axis.
For the proposed approach, grasp stability for each modu-

lar task is assessed independently. During the training phase,
various objects are grasped with two approach directions for
the gripper at several locations spread vertically along the
object. We consider the grasping position, object deforma-
bility, and the tactile sensor readings to infer the stability. We
propose a new approach to reduce the high dimensionality
and redundancy of the tactile sensor readings. Analytical
features are extracted from the readings, including the contact
area, the pressure-weighted friction center, the friction, and
the work. A decision forest is applied as a classi�er and
trained for each task independently.

To infer the grasp stability for a main manipulation task,
the desired gripper pose for the task will �rst be analyzed,
whether it can be reached through a sequence of the motion
tasks. If all tasks within the chosen sequence and the holding
task can succeed, the manipulation task is estimated to be
successful. The relevance of the modular tasks can be further
improved when the manipulation task is known prior to the
grasp assessment (e.g. in an industry environment) or has
a human in the loop (e.g. in a tele-operation scenario). For
instance, when the objects to be manipulated are deformable
and non-fragile, such as sponges or soft toys, the holding task
can be removed from the task sequence and the prediction
accuracy can be further improved.

We present an evaluation of the trained model for each
modular task. We show that with our proposed feature
set, a higher prediction accuracy can be achieved for six
of seven modular tasks. We further compare the grasping
and manipulation process with and without considering the
modular tasks. Experimental evaluation shows that much less
grasp adaptation steps are required with the proposed method
to successfully execute the manipulation task.

Our contributions are summarized as follows:
� We propose a modular task-oriented grasp stability

assessment, where the trained underlying models can
be �exibly adapted to different manipulation tasks.

� We propose a combination of analytical features ex-
tracted from the tactile sensor readings to reduce the
data redundancy.

II. RELATED WORK

Grasp stability estimation using tactile sensor readings can
be divided into analytical and learning-based approaches. For
analytical ones, Krug et al. [7] predict the grasp stability
for a lifting task based on the grasp wrench space. The
effect of uncertainties including object pose, weight and
friction coef�cient is evaluated. Conservative approximation
of object properties is recommended to avoid false positive

predictions. The limitations of this approach include the dif-
�culty of formulating the disturbance wrenches for dynamic
or complicated tasks.

For learning-based grasp stability assessment, different
hand-crafted features are extracted from the tactile sensor
readings to reduce the high dimensionality and redundancy,
such as k-means clustering applied in [3], principle com-
ponents analysis (PCA) in [4], [8], and image moments in
[1], [2], [5], [9]–[11]. Laaksonen et al. [12] evaluate the
performance of various features extracted from the tactile
readings and machine learning methods in determining the
grasp stability. Recently, unsupervised learning [6] or deep
neural networks [13], [14] are applied to estimate the grasp
stability without hand-crafted features.

Different manipulation tasks are considered for labeling
the grasp stability, such as lifting [3], [6], [10], [13], [15],
lifting with accelerations and decelerations [14], lift and
rotate[� 120� ; +120� ] around the approach vector [2], [12],
or rotate +90 � around thex; y-axis, wherez-axis is the
direction of the lift [12]. Bekiroglu et al. [1] integrate the
task-dependency with grasp stability estimation. A Bayesian
network is used to model the conditional relations between
the sensory streams and three tasks including a hand-over
task (parallel transportation), a pouring task (90� rotation),
and a dish washing task (180� rotation).

To our knowledge, no related work has provided an
extensive evaluation of the grasp stability for all 6D trans-
lational and rotational moving actions and how the stability
is affected when manipulating deformable, fragile objects or
open containers. Furthermore, how to adapt the trained model
of the stability for speci�c tasks to new manipulation tasks
has not been attempted yet. The consequences of applying
the same model to new tasks should be analyzed. We
propose grasp stability assessment for seven modular tasks
and provide the �exibility to estimate the stability for new
tasks by representing them as sequences of modular tasks.
The proposed approach guides a grasping and manipulation
process with better time and energy ef�ciency.

III. PROPOSED APPROACH

First, we describe the notation used in this paper:

� T = fT holding; TTx ; TTy ; TTz ; TR x ; TR y ; TR z g denotes the
task space for seven modular tasks: the holding task and
the six motion tasks.

� S = fS T ; SR g denotes the sequence of motion tasks for
a main manipulation task.

� R = fR ST ; R SR g denotes the relevant modular tasks
for the sequencefS T ; SR g.

� F = f (H k ; D k ; X k )gk=1 :::N denotes a feature set with
N observations, where
– H k denotes the grasping position in the object-

centered coordinate system.
– D k denotes the object deformation.
– X k = fCk ; pk ; ~f k ; ~� k ; wk g denotes the analytical

features extracted from the tactile sensor readings,
including the contact area, the friction-weighted pres-



sure center, the estimated friction, and the work
performed by a grasp �nger.

A. Analytical features

Here we describe the analytical features extracted from
the tactile sensor readings. The feature sets used for the
classi�cation are described in Section IV-C.

In analytical approaches, friction of a contact is constantly
analyzed to build the grasp wrench space (GWS), where
its volume is a classical quality metric of a grasp [16],
[17]. The work is applied as a quality metric for grasping
deformable objects [18]. Therefore, we consider them as
features to analyze grasp stability. Here, we brie�y introduce
the computation for the friction-weighted pressure center, the
maximal possible friction [19], [20], and the work performed
by the grasp �nger.

For a taxeltxy from a tactile sensor reading with an index
[x; y]T , we denote� xy as the friction coef�cient,� xy as the
pressure value,axy as the area of the taxel,c = [ cx ; cy ]T as
the center coordinate of the taxeltxy .

For a contact areaC, the friction-weighted pressure center
p = [ px ; py ] is computed by:

px =

R
C x� xy � xy dC
R

C � xy � xy dC
, py =

R
C y� xy � xy dC
R

C � xy � xy dC
: (1)

The maximal possible frictional forcef xy and torque� xy

of a taxeltxy is computed by:

f xy = � xy � xy axy , � xy = f xy lxy ;

with lxy =
q

(px � cx )2 + ( py � cy )2:
(2)

In practical experiments, it is dif�cult to accurately esti-
mate the friction coef�cient. Inspired by [7], we assume a
Coulomb friction model and use a conservatively approx-
imated friction coef�cient ~� xy = 0 :45 based on the table
of frictional coef�cients [21]. Detailed friction sensitivity
analysis for the grasp quality can be found in [22].

The approximated maximal frictional force~f and torque~�
of the tactile sensor reading with sizeSx � Sy are computed
by:

~f =
SxX

x =1

SyX

y=1

~� xy � xy axy ;

~� =
SxX

x =1

SyX

y=1

~� xy � xy axy lxy :

(3)

The contact areaC is computed by:

C =
SxX

x =1

SyX

y=1

Cxy , with

(
Cxy = axy , if � xy > 0
Cxy = 0 , else.

(4)

The amount of workw performed by a grasp �nger on
the object is computed by:

w =
SxX

x =1

SyX

y=1

� xy axy d; (5)

whered is the deformation of the object caused by the grasp
force.

B. Grasp stability assessment for modular tasks

We divide the task for training into modular tasks, such
that new manipulation tasks can be assessed without rec-
ollecting the data or retraining the underlying model. We
de�ne seven modular tasks, which consist of the holding task
and six motion tasks, i.e.TTx ; TTy ; TTz ; TR x ; TR y ; TR z . The
taskTholding infers whether holding a deformable and fragile
object will succeed with a planned grasp force.

The six motion tasks represent the six degrees of freedom
of the object movement. The de�nedx; y; z-axes for the
motion tasks coincide with the gripper's coordinate system,
as shown in Fig. 1. They-axis is perpendicular to the tactile
sensor, which represents the direction of the grasp force.
In this work, only grasps from the side are considered.
This means that the initialz-axis of the gripper's coordinate
system is parallel to the direction of gravity.

The coordinate system for the modular tasks is selected
based on their different stability demands. For instance, the
frictional force is required to compensate the gravity for
all the translational movements. However, the acceleration
along they-axis for the taskTTy can be provided by the
grasp force, while the acceleration along thex-axis needs to
be provided by the frictional force. Therefore, the taskTTx

is more demanding thanTTy , when the magnitude of the
acceleration along the two axes is the same. For a rotation
around they-axis, the gravitational torque of the object
should be compensated with the frictional torque, while it
can be balanced by the torque of the grasp force for a rotation
around thex-axis. The taskTR y is hence expected to be more
dif�cult than TR x .

To estimate the grasp stability, we use the random forest
classi�er [23], which is trained separately for each modular
task. The out-of-bag (OOB) data is utilized to test the
performance of the classi�er and to estimate the feature
importance.

C. Grasp stability assessment for main tasks

A manipulation task can be considered in general as a
trajectory or a target pose of the end effector. In this work,
we de�ne a main task as a pose (position and orientation)
of the gripper. The object will be �rst transported to a target
position without possibly spilling the content. A rotation is
then followed to reach a target orientation.

The target pose can be reached with a sequence of modular
tasks. An object can be transported to a target positiondT =
[dx W ; dyW ; dzW ]T in the world coordinate system through
three sequencesST1; 2 ; 3 , as depicted in Fig. 2(a).

ST1 = f dzW TTz ; dx W TTx ; dyW TTy g;

ST2 = f dzW TTz ; (90� � � z )TR z ;
q

d2
x W

+ d2
yW

TTy g;

ST3 = f dzW TTz ; � zTR z ;
q

d2
x W

+ d2
yW

TTx g;

with � z = atan(
dyW

dx W

);

(6)
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(a) Three sequences of modular tasks to reach a target positiondT .
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(b) Sequences of modular tasks to reach two target orientations
dR 1 ; dR 2 for a pouring task.

Fig. 2: Example sequences of modular tasks to (a): reach a
target positiondT , (b): pour liquid within a target region. The
relevant modular tasks to reach the target are summarized
below each sequence.

where the multiplication is de�ned as the translation/rotation
in the direction of the corresponding modular task.

If dx W ; dyW ; dzW 6= 0 , the relevant modular tasksR ST i

for the corresponding sequenceST i ; i = 1 ; 2; 3 are:

R ST 1
= fT Tz ; TTx ; TTy g;

R ST 2
= fT Tz ; TR z ; TTy g;

R ST 3
= fT Tz ; TR z ; TTx g:

(7)

A rotation task is followed when the transportation task
is executed. A desired orientationdR = [ � x ; � y ; � z ]T can be
reached through three movements, where each of them is a
rotation around one of thex; y; z-axes. Therefore,dR can
be reached through the task sequenceSR :

SR = f � zTR z ; � y TR y ; � x TR x g: (8)

Partial terms ofdR can be zero for different rotation tasks,
e.g. to pour liquid from a container for a target pouring
region. Two desired orientationsdR 1 = [0 ; � y1 ; � z1 ]T and
dR 2 = [ � x 2 ; 0; � z2 ]T are typically used for such tasks, as
illustrated in Fig. 2(b). The sequencesSR 1; 2 and the relevant
modular tasksR SR 1; 2

to reach the orientations are:

SR 1 = f � z1 TR z , � y1 TR y g; R SR 1
= fT R z ; TR y g;

SR 2 = f � z2 TR z , � x 2 TR x g; R SR 2
= fT R z ; TR x g:

(9)

The main task will be estimated to be successful, if the
following conditions hold:

1. The desired positiondT and orientationdR can be
reached through a sequence of the six motion tasks
fS T ; SR g.

2. Tholding and all the relevant motion tasksfR ST ; R SR g
of the chosen sequence are inferred to succeed.

Moreover, the relevance of the modular tasks may be
further improved with human hints. For instance, in an
industry environment or a tele-operation scenario, the human
operator can remove the holding task when the objects are
deformable and non-fragile, such as sponges or soft toys.
The false negatives can thereby be further reduced and
unnecessary grasp adaptations can be avoided.

IV. DATA ACQUISITION

A. Hardware setup

The hardware setup used for the data acquisition is shown
in Fig. 3. We use a Schunk parallel gripper, which is
mounted on a KUKA lightweight robot arm. We attach an
Intel®RealSenseTM SR300 RGBD camera on top of the
gripper to localize the object and to estimate the object
size directly from the captured point cloud. We apply the
statistical outlier removal from the Point Cloud Library
(PCL) [24] to remove noise. A Weiss Robotics WTS tactile
sensor [25] with14 � 6 taxels is mounted on one gripper
�nger, where the size of each taxel is 3.4 mm� 3.4 mm. In
addition, we cover both �ngers with a thin layer of rubber
sheet to smooth the surface of the tactile sensor and to
increase the grasp stability.

B. Data collection

We describe the grasp strategy to collect data, including
the approach vectors, the grasping locations, and the grasp
forces. To reduce the space of possible grasping postures, the
object shape can be represented with shape primitives [26],
[27]. In this work, we estimate the three-dimensional object
size from the point cloud and approximate it with a cuboid.
When collecting data for each object, we use two approach
directions~a1 and~a2, which are perpendicular to the planes
of both sides of the cuboid, respectively. For each approach
direction, NG locations are equally spread vertically along
the object.

To collect data for each object, we select a set ofNF

grasping forcesF = f F1; : : : ; FN F g to squeeze each grasp
location. Each object has an individual set ofNF grasp
forces. However, the ratio� between each grasp force and
the mass of the object is a constant over allNO objects,
where the mass is estimated by the volume of the cuboid
multiplied by the water density. This implies that for thei -
th object with the massmi , the set of grasp forcesF i

j with
j = 1 ; : : : ; NF is computed by:

F i
j

mi = � j ; 8i = 1 ; : : : ; NO ; where� j are constants: (10)

The grasp forces are determined such that the classi�er for
grasp stability is invariant to the object weight. The equally



Fig. 3: Our hardware setup includes a parallel gripper, a
RGBD camera, and a tactile sensor, which provides a 14� 6
2D pressure array.

scaled forces are used for force adaptation as well. When
a grasp is predicted to be unstable, the force with the next
larger scale will be applied.

Finally, when the gripper has reached a grasp location, the
�ngers are closed until the planned grasp force is applied.
The data including the grasp location, object deformation and
the tactile sensor readings are recorded prior to the execution
of each modular task.

To label the grasp data, the six motion tasks are evaluated
separately by moving the arm accordantly with a maximum
speed after reaching the planned grasp. However, the object is
�rst lifted along thez-axis prior to each movement, such that
no support-force acts on the object during the manipulation.
Each motion task has an individual moving range due to the
limited workspace, where the translation along thex; y-axes
are within [� 0:5 m; 0:5 m], the range for lifting the object
is [0:0 m; 0:7 m]. The rotation around thex; z-axes is within
[� 90� ; 90� ], while the range of the rotation around they-axis
is [0; 90� ].

The taskTholding uses the data with a grasp force to predict
the success for the force with the next larger scale in the set
f F1; : : : ; FN F g. Therefore, the set of grasp forces for the
Tholding is f F0; F1; : : : ; FN F � 1g, whereF0 = 0 :5 � F1.

C. Feature representation

The features used in this work are the grasping locationH ,
the object deformationD , and analytical features extracted
from the tactile sensor readingsX .

The grasping locationH k of the observationk is computed
by the center location of two �ngertips in the object-centered
coordinate system and normalized by dividing it by the object
height, such that it becomes invariant to the object scale.

The object deformationD k of the k-th observation is
computed by:

D k =
L k

S � L k
E

L k
S

; (11)

where L k
S is the start grasp length of the gripper and is

recorded when both �ngers and the object are just in contact.
L k

E is the end grasp length when the contact force reached
the planned force. The deformation is normalized by dividing
it by L k

S , since it should be relative to the original length of
the object at this location. The proposed analytical features

Fig. 4: Selected objects for the experiments, including rigid
objects, plastic cups, non-fragile objects, and plastic bottles.
The bottles with open and close states are marked with a
star. The dashed box marks the objects for testing.

extracted from the tactile sensor readings are described in
Sec. III-A.

Similar to [2], we normalize the features to zero-mean and
unit standard deviation, with the exception of the grasping
location and the friction-weighted pressure center, since they
have a �xed range.

Other methods for dimensionality reduction of the tactile
sensor readings exist, such as principal component analysis
(PCA) applied in [4] and the image moments applied in
[1], [2], [5], [9]–[11]. We compare the proposed analytical
features to these two methods. Eight principal components
are used in the experiments, which explain ca.90% of the
data. The image momentsmp;q for the tactile sensor readings
are computed by:

mp;q =
SxX

x =1

SyX

y=1

xpyq� xy : (12)

We use the image moments up to order two, which means
(p+ q) 2 f 0; 1; 2g. Therefore, there are six moments in total.

V. EXPERIMENTS AND RESULTS

A. Experimental setup

We evaluate two aspects of the proposed approach: the
classi�cation performance for each modular task with the
proposed feature set and the prediction result for the main
tasks with and without dividing the training task into modular
ones.

We select 21 objects for the experiment, as summarized in
Fig. 4, including rigid objects, plastic cups, plastic bottles,
and deformable non-fragile objects. The bottles that have
two states, open and closed, are marked with a star in Fig.
4. The plastic cups and bottles are �lled with liquid, which
are covered with a plastic material on the top during the
experiment, such that the liquid is able to over�ow, but
will not destroy the electrical devices. The holding task
is considered successful, when the bottles are closed. It is
labeled as a failure, when the objects are damaged or the
liquid over�ows with a planned grasp force.

Two grasp forces are selected for the experiment. The
ratios � 1; � 2 between each force and the estimated mass of
the object are 10 and 60, which are determined based on
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(c) The rotational motion tasks.

Fig. 5: The out-of-bag (OOB) error for �ve sets of features for seven modular tasks. Feature set 5 (proposed) achieves the
lowest OOB error for all tasks. Large improvements can be found for translational modular tasks and the taskTR x .

TABLE I: Comparison of the prediction error for seven modular tasks and the average error for all tasks.
Tholding TTx TTy TTz TR x TR y TR z All 7 Tasks

mean std mean std mean std mean std mean std mean std mean std mean
Set 3 0.4 0.370 0.188 0.132 0.189 0.136 0.219 0.160 0.225 0.100 0.274 0.285 0.181 0.144 0.2394
Set 4 0.370 0.299 0.200 0.146 0.202 0.129 0.224 0.148 0.280 0.110 0.320 0.267 0.177 0.122 0.2533
Set 5 0.410 0.393 0.178 0.151 0.135 0.129 0.166 0.150 0.160 0.119 0.175 0.101 0.151 0.132 0.1964

an overestimated (� 1) and an underestimated (� 0:16)
friction coef�cient. Each object is grasped with two approach
vectors. For each approach vector, 6-12 locations are grasped
depending on the height of the object. Each location is
grasped with two forces for each of the motion tasks and
three forces for the holding task, where the ratio� 0 for the
smallest forceF0 is 5. This force is used to predict whether
the holding task will succeed when the grasp forceF1 with
the ratio � 1 = 10 is applied. The grasp data for the plastic
containers, that are marked with a star in Fig. 4, are collected
twice for its open and closed state.

B. Prediction results for modular tasks

To infer the success of modular tasks, we train 1000
decision trees for each task. We compare the proposed
analytical features extracted from the tactile sensor readings
with features based on principle components and image
moments as introduced in Section IV-C. The forests are
trained with the data of all 21 objects and we �nd the
prediction error over the out-of-bag (OOB) data, which is
de�ned as OOB error in this work.

Table II summarized the �ve combinations of features that
are evaluated in our experiments.

TABLE II: Considered feature sets for the OOB error com-
parison. Feature set 5 is proposed.

Feature set Basic features Tactile sensor readings
1 H /
2 H ,D /
3 H ,D 6 image moments
4 H ,D 8 principle components
5 H ,D C; p; ~f ; ~� , w

The OOB error for the seven modular tasks is shown
in Fig. 5. The proposed feature set yields a lower OOB

error for all the tasks. Large improvements can be found for
translational modular tasksTTx ; TTy ; TTz and the taskTR x .

Next, we select 13 objects for training and 8 for testing
to compare the feature sets 3-5 in Table II. The objects
for testing are marked with a dashed box in Fig. 4. Table I
summarizes the mean and the standard deviation (std) of the
prediction error for each modular task and the average error
for all tasks. We are able to achieve a prediction accuracy
of 80.36% with the proposed features extracted from the
tactile sensor readings. The prediction error is lowered by up
to 5.69% compared to other feature sets. The error for the
holding task is high compared to other tasks. In particular,
the false negatives of the pink cup (a soft toy) in Fig. 4 is
100%, due to the excessive deformation caused by the grasp.
When manipulating such objects, a prior-knowledge about
whether the object is fragile, can avoid the false negatives.
The experiment is described in Section V-C.

Finally, we analyze the importance of each proposed
feature for two selected modular tasks in Fig. 6(a) and
(b). The importance is measured by the increment of the
prediction error, when permuting the values of each feature.

The object deformation carries a high importance for the
holding task, as shown in Fig. 6(a). The workw is the
second most important feature, since it indirectly measures
the object deformation. Fig. 6(b) shows that the grasping
location is essential for the lifting taskTTz . The friction-
weighted pressure centerp on they-axis py is important for
the task as well, since it encodes the object local geometry.
Two grasp examples are illustrated in Fig. 6(c) and (d) with
an enlarged view of each contact and the corresponding
tactile sensor reading. Fig. 6(c) is a successful grasp for a
lifting task while Fig. 6(d) fails. The pressure center in Fig.
6(c) is on the upper part of the reading, which indicates a
lower value ofpy . It implies that the contact area of the
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Fig. 6: Importance plot of features for (a) the modular taskTholding and (b) the lifting taskTTz . The vertical locationpy

of the friction-weighted pressure center encodes object local geometry and therefore carries a high importance for theTTz .
Fig. (c) and (d) show a successful and a failed grasp for theTTz with an enlarged view of the contact and the tactile sensor
readings. If the center is on the upper part of the tactile image, the lift-up task is likely to succeed.
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(c) Grasp processes with modular tasks (proposed).

Fig. 7: Grasp processes for three example manipulation tasks. The considered sequences of modular tasksSR ; ST can be
found in Fig. 2. With the proposed method, much less grasp adaptations are required to successfully execute the manipulation
tasks, as depicted in (c). Note that for the last main task,Tholding is predicted to fail for all grasp locations and forces due
to the excessive deformation. With a prior-knowledge that the object is non-fragile, it can be successfully manipulated with
the proposed method, while the manipulation fails in (b) after all grasp candidates are attempted.

object is wider on the upper part than on the lower part.
Therefore, it is likely that there is a support structure above
the object part that is in contact with the gripper when the
object is lifted.

C. Assessing grasp stability for main tasks

We infer the success of the main manipulation tasks and
the paths for the task execution based on the prediction
results of the modular tasks. We compare the manipulation
process of the proposed approach with the case, where
the model for stability assessment is trained for a �xed
task. In the latter case, the training task is considered as
a sequence of all seven tasks. The success label will only
be true if the whole task sequence can be successfully
executed. Such conservative training process can be expected
to avoid false positives and a failure of the action, when the

new manipulation task is unknown. A preliminary planner
is applied to demonstrate the difference. The object will
be grasped starting the lowest location among the grasp
candidates. If the grasp for the main task is predicted to
be unsuccessful, a grasp force adaptation will be triggered
with a larger force (� = 60) used in training. If the task
is further inferred to fail, a higher location will be selected
for a regrasp. The process will be repeated until a feasible
grasp location is detected or all grasp locations are predicted
to fail. The results for three example manipulation tasks are
illustrated in Fig. 7, where the target pose of each task is
manually de�ned. Without considering modular tasks, the
prediction of the success will only be true for the main task,
if the whole task sequence can succeed, i.e. all modular tasks
are inferred to be successful. Robotic experiments show that



numerous unnecessary grasp force adaptations and regrasps
are avoided with the proposed approach.

VI. CONCLUSION

In this work, we present a learning-based approach for
grasp stability assessment for seven modular tasks includ-
ing a holding task and six motions tasks to manipulate
deformable fragile objects. Our experiments demonstrate that
the average prediction accuracy achieves 80.36% for all
modular tasks. The proposed analytical features extracted
from the tactile sensor readings lower the prediction error up
to 5.69% compared to the classical methods for dimension-
ality reduction, i.e. image moments and principle component
analysis. Furthermore, we show that a manipulation task
can be represented as a sequence of modular tasks and the
stability can be inferred thereby based on the prediction of
relevant modular tasks. We demonstrate that unnecessary
grasp force adaptations and regrasps can be avoided with
the proposed stability assessment for modular tasks.

Limitation analysis: The OOB error and the importance
plots of features suggests that partial modular tasks might
be correlated, such asTTz ; TTy and TR z . When collecting
data for these tasks, we observed that the success rates are
similar among them. This may be caused by the limited
acceleration of the three movements. Therefore, the division
of the modular tasks needs to be further investigated. In
addition, the labeling of the modular tasks are under the
restriction that the approach vectors of the grasps are from
the side. The prediction results might differ when the grasps
are from the top. Moreover, further analysis is required to
evaluate whether a complicated manipulation task can be
guaranteed to be successful, when all relevant modular tasks
succeeded. To investigate this, analytical approaches can be
used to determine the required force and torque components
for the main and modular tasks. Finally, the path to reach the
target pose is restricted by the prediction results of the six
motion tasks. A probabilistic framework can be investigated
to combine the stability assessment with path planning. The
success rate of each path, which is provided by, e.g., inverse
kinematics can be estimated. The optimal path can be thereby
selected for safe manipulation.

Future work: In addition to addressing the aforemen-
tioned limitations, we will consider more modular tasks,
such as accelerations and decelerations, and more grasps to
further investigate their dependencies. We will combine the
grasp stability assessment with a more sophisticated grasp
planner and grasp adaptation strategies for a more complete
manipulation process.
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