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Abstract— Assessing grasp stability is essential to prevent
the failure of robotic manipulation tasks due to sensory data
and object uncertainties. Learning-based approaches are widely
deployed to infer the success of a grasp. Typically, the under-
lying model used to estimate the grasp stability is trained for a
specific task, such as lifting, hand-over, or pouring. Since every
task has individual stability demands, it is important to adapt
the trained model to new manipulation actions. If the same
trained model is directly applied to a new task, unnecessary
grasp adaptations might be triggered, or in the worst case, the
manipulation might fail.

To address this issue, we divide the manipulation task used
for training into seven sub-tasks, defined as modular tasks. We
deploy a learning-based approach and assess the stability for
each modular task separately. We further propose analytical
features to reduce the dimensionality and the redundancy of the
tactile sensor readings. A main task can thereby be represented
as a sequence of relevant modular tasks. The stability prediction
of the main task is computed based on the inferred success
labels of the modular tasks. Our experimental evaluation shows
that the proposed feature set lowers the prediction error
up to 5.69% compared to other sets used in state-of-the-art
methods. Robotic experiments demonstrate that our modular
task-oriented stability assessment avoids unnecessary grasp
force adaptations and regrasps for various manipulation tasks.

I. INTRODUCTION

Intelligent robots should be able to operate in unstructured

environments with partially unknown objects. The sensory

data and object uncertainties often lead to failure of manipu-

lation tasks. Hence, it is essential to predict the grasp stability

prior to a manipulation attempt. The stability is affected

by various properties of the object, such as weight, center

of gravity, material properties etc. Analytical approaches are

hence suboptimal to infer grasp stability in unstructured envi-

ronments, since they typically require complete knowledge of

the object and its contact with the end effector. To cope with

such uncertainties, learning-based approaches are generally

applied to estimate grasp stability.

The stability of a grasp highly depends on the specific

manipulation task, since each task comes with different

challenges. For instance, a pick-and-place task is likely to

cause object sliding, while a pouring task possibly causes in-

hand rotations. Moreover, manipulating deformable fragile

objects or open containers is more difficult than handling

rigid objects. It is further important to not damage the object

and to avoid undesired effects such as content spilling of an

Jingyi Xu, Amit Bhardwaj, Ge Sun, Tamay Aykut, Nicolas Alt, Mojtaba
Karimi, and Eckehard Steinbach are with the Chair of Media Technology,
Technical University of Munich, Germany. Email: {jingyi.xu,
amit.bhardwaj, ge.sun, tamay.aykut, n.alt,
mojtaba.karimi, eckehard.steinbach}@tum.de

Holding

Trans. along �-axis

Trans. along �-axis

Trans. along z-axis

Rot. around �-axis

Rot. around �-axis

Rot. around �-axis

Task 1

Lifting

Task 2

Pouringx

z

y

x

Task 1

z

y

Task 2

xz

y

Fig. 1: We assess grasp stability for seven modular tasks: the

holding task and six motion tasks. The holding task predicts

whether a fragile object will be damaged or the content will

spill for the planned grasp force. New manipulation tasks

can be flexibly represented as sequences of modular tasks.

Two example tasks are depicted. The lifting task includes the

holding task and a translation along the z-axis. The pouring

task includes the holding task, a translation along the z-axis

and a rotation around the x-axis.

open container caused by the deformation. Minimum grasp

force should therefore be used to manipulate such objects.

Assessing grasp stability for different manipulation tasks

is studied in [1]–[6]. Typically, the success label of a grasp

is collected by moving the arm according to one or several

pre-defined tasks, like lifting, hand-over, or pouring. The un-

derlying model of the grasp stability will then be trained and

validated with the same tasks. The collected data and trained

underlying model are only suitable for specific actions that

are used in training. Adjusting the trained model to new

manipulation tasks remains a challenge. Directly applying

the model to a different task may cause unnecessary grasp

adaptations or a failure of the action.

To address this issue, we propose a modular task-oriented

grasp stability assessment. A manipulation task can be di-

vided into several sub-tasks, defined as modular tasks in

the remainder. They can be flexibly combined to represent

new tasks. We define seven modular tasks: a holding task

and six motion tasks, as illustrated in Fig. 1. The holding

task infers whether a fragile object will be damaged or the

content will spill from a plastic container with an open

lid. The six motion tasks are the three-dimensional transla-

tional/rotational movements of the gripper along/around the

x, y, z-axes, respectively. Each of them estimates the grasp

stability for the object manipulation with the corresponding



motion. In general, a manipulation can be considered as a

trajectory or a target pose of the end effector, while the

object is safely grasped during the movement. Therefore,

a manipulation task can be considered as a task sequence

of the modular tasks followed by the grasp. Fig. 1 shows

an example pouring task, which can be considered as a task

sequence of lifting (a translation along the z-axis) and a 90◦

rotation around the x-axis.

For the proposed approach, grasp stability for each modu-

lar task is assessed independently. During the training phase,

various objects are grasped with two approach directions for

the gripper at several locations spread vertically along the

object. We consider the grasping position, object deforma-

bility, and the tactile sensor readings to infer the stability. We

propose a new approach to reduce the high dimensionality

and redundancy of the tactile sensor readings. Analytical

features are extracted from the readings, including the contact

area, the pressure-weighted friction center, the friction, and

the work. A decision forest is applied as a classifier and

trained for each task independently.

To infer the grasp stability for a main manipulation task,

the desired gripper pose for the task will first be analyzed,

whether it can be reached through a sequence of the motion

tasks. If all tasks within the chosen sequence and the holding

task can succeed, the manipulation task is estimated to be

successful. The relevance of the modular tasks can be further

improved when the manipulation task is known prior to the

grasp assessment (e.g. in an industry environment) or has

a human in the loop (e.g. in a tele-operation scenario). For

instance, when the objects to be manipulated are deformable

and non-fragile, such as sponges or soft toys, the holding task

can be removed from the task sequence and the prediction

accuracy can be further improved.

We present an evaluation of the trained model for each

modular task. We show that with our proposed feature

set, a higher prediction accuracy can be achieved for six

of seven modular tasks. We further compare the grasping

and manipulation process with and without considering the

modular tasks. Experimental evaluation shows that much less

grasp adaptation steps are required with the proposed method

to successfully execute the manipulation task.

Our contributions are summarized as follows:

• We propose a modular task-oriented grasp stability

assessment, where the trained underlying models can

be flexibly adapted to different manipulation tasks.

• We propose a combination of analytical features ex-

tracted from the tactile sensor readings to reduce the

data redundancy.

II. RELATED WORK

Grasp stability estimation using tactile sensor readings can

be divided into analytical and learning-based approaches. For

analytical ones, Krug et al. [7] predict the grasp stability

for a lifting task based on the grasp wrench space. The

effect of uncertainties including object pose, weight and

friction coefficient is evaluated. Conservative approximation

of object properties is recommended to avoid false positive

predictions. The limitations of this approach include the dif-

ficulty of formulating the disturbance wrenches for dynamic

or complicated tasks.

For learning-based grasp stability assessment, different

hand-crafted features are extracted from the tactile sensor

readings to reduce the high dimensionality and redundancy,

such as k-means clustering applied in [3], principle com-

ponents analysis (PCA) in [4], [8], and image moments in

[1], [2], [5], [9]–[11]. Laaksonen et al. [12] evaluate the

performance of various features extracted from the tactile

readings and machine learning methods in determining the

grasp stability. Recently, unsupervised learning [6] or deep

neural networks [13], [14] are applied to estimate the grasp

stability without hand-crafted features.

Different manipulation tasks are considered for labeling

the grasp stability, such as lifting [3], [6], [10], [13], [15],

lifting with accelerations and decelerations [14], lift and

rotate [−120◦,+120◦] around the approach vector [2], [12],

or rotate +90◦ around the x, y-axis, where z-axis is the

direction of the lift [12]. Bekiroglu et al. [1] integrate the

task-dependency with grasp stability estimation. A Bayesian

network is used to model the conditional relations between

the sensory streams and three tasks including a hand-over

task (parallel transportation), a pouring task (90◦ rotation),

and a dish washing task (180◦ rotation).

To our knowledge, no related work has provided an

extensive evaluation of the grasp stability for all 6D trans-

lational and rotational moving actions and how the stability

is affected when manipulating deformable, fragile objects or

open containers. Furthermore, how to adapt the trained model

of the stability for specific tasks to new manipulation tasks

has not been attempted yet. The consequences of applying

the same model to new tasks should be analyzed. We

propose grasp stability assessment for seven modular tasks

and provide the flexibility to estimate the stability for new

tasks by representing them as sequences of modular tasks.

The proposed approach guides a grasping and manipulation

process with better time and energy efficiency.

III. PROPOSED APPROACH

First, we describe the notation used in this paper:

• T = {Tholding, TTx
, TTy

, TTz
, TRx

, TRy
, TRz

} denotes the

task space for seven modular tasks: the holding task and

the six motion tasks.

• S = {ST ,SR} denotes the sequence of motion tasks for

a main manipulation task.

• R = {RST
,RSR

} denotes the relevant modular tasks

for the sequence {ST ,SR}.

• F = {(Hk, Dk,Xk)}k=1...N denotes a feature set with

N observations, where

– Hk denotes the grasping position in the object-

centered coordinate system.

– Dk denotes the object deformation.

– Xk = {Ck,pk, f̃k, τ̃k, wk} denotes the analytical

features extracted from the tactile sensor readings,

including the contact area, the friction-weighted pres-



sure center, the estimated friction, and the work

performed by a grasp finger.

A. Analytical features

Here we describe the analytical features extracted from

the tactile sensor readings. The feature sets used for the

classification are described in Section IV-C.

In analytical approaches, friction of a contact is constantly

analyzed to build the grasp wrench space (GWS), where

its volume is a classical quality metric of a grasp [16],

[17]. The work is applied as a quality metric for grasping

deformable objects [18]. Therefore, we consider them as

features to analyze grasp stability. Here, we briefly introduce

the computation for the friction-weighted pressure center, the

maximal possible friction [19], [20], and the work performed

by the grasp finger.

For a taxel txy from a tactile sensor reading with an index

[x, y]T , we denote µxy as the friction coefficient, ρxy as the

pressure value, axy as the area of the taxel, c = [cx, cy]
T as

the center coordinate of the taxel txy .

For a contact area C, the friction-weighted pressure center

p = [px, py] is computed by:

px =

∫

C
xµxyρxydC

∫

C
µxyρxydC

, py =

∫

C
yµxyρxydC

∫

C
µxyρxydC

. (1)

The maximal possible frictional force fxy and torque τxy
of a taxel txy is computed by:

fxy = µxyρxyaxy , τxy = fxylxy,

with lxy =
√

(px − cx)2 + (py − cy)2.
(2)

In practical experiments, it is difficult to accurately esti-

mate the friction coefficient. Inspired by [7], we assume a

Coulomb friction model and use a conservatively approx-

imated friction coefficient µ̃xy = 0.45 based on the table

of frictional coefficients [21]. Detailed friction sensitivity

analysis for the grasp quality can be found in [22].

The approximated maximal frictional force f̃ and torque τ̃

of the tactile sensor reading with size Sx×Sy are computed

by:

f̃ =

Sx
∑

x=1

Sy
∑

y=1

µ̃xyρxyaxy,

τ̃ =

Sx
∑

x=1

Sy
∑

y=1

µ̃xyρxyaxylxy.

(3)

The contact area C is computed by:

C =

Sx
∑

x=1

Sy
∑

y=1

Cxy , with

{

Cxy = axy , if ρxy > 0

Cxy = 0, else.
(4)

The amount of work w performed by a grasp finger on

the object is computed by:

w =

Sx
∑

x=1

Sy
∑

y=1

ρxyaxyd, (5)

where d is the deformation of the object caused by the grasp

force.

B. Grasp stability assessment for modular tasks

We divide the task for training into modular tasks, such

that new manipulation tasks can be assessed without rec-

ollecting the data or retraining the underlying model. We

define seven modular tasks, which consist of the holding task

and six motion tasks, i.e. TTx
, TTy

, TTz
, TRx

, TRy
, TRz

. The

task Tholding infers whether holding a deformable and fragile

object will succeed with a planned grasp force.

The six motion tasks represent the six degrees of freedom

of the object movement. The defined x, y, z-axes for the

motion tasks coincide with the gripper’s coordinate system,

as shown in Fig. 1. The y-axis is perpendicular to the tactile

sensor, which represents the direction of the grasp force.

In this work, only grasps from the side are considered.

This means that the initial z-axis of the gripper’s coordinate

system is parallel to the direction of gravity.

The coordinate system for the modular tasks is selected

based on their different stability demands. For instance, the

frictional force is required to compensate the gravity for

all the translational movements. However, the acceleration

along the y-axis for the task TTy
can be provided by the

grasp force, while the acceleration along the x-axis needs to

be provided by the frictional force. Therefore, the task TTx

is more demanding than TTy
, when the magnitude of the

acceleration along the two axes is the same. For a rotation

around the y-axis, the gravitational torque of the object

should be compensated with the frictional torque, while it

can be balanced by the torque of the grasp force for a rotation

around the x-axis. The task TRy
is hence expected to be more

difficult than TRx
.

To estimate the grasp stability, we use the random forest

classifier [23], which is trained separately for each modular

task. The out-of-bag (OOB) data is utilized to test the

performance of the classifier and to estimate the feature

importance.

C. Grasp stability assessment for main tasks

A manipulation task can be considered in general as a

trajectory or a target pose of the end effector. In this work,

we define a main task as a pose (position and orientation)

of the gripper. The object will be first transported to a target

position without possibly spilling the content. A rotation is

then followed to reach a target orientation.

The target pose can be reached with a sequence of modular

tasks. An object can be transported to a target position dT =
[dxW

, dyW
, dzW ]T in the world coordinate system through

three sequences ST1,2,3
, as depicted in Fig. 2(a).

ST1
= {dzW TTz

, dxW
TTx

, dyW
TTy

},

ST2
= {dzW TTz

, (90◦ − θz)TRz
,
√

d2xW
+ d2yW

TTy
},

ST3
= {dzW TTz

, θzTRz
,
√

d2xW
+ d2yW

TTx
},

with θz = atan(
dyW

dxW

),

(6)



�"

�" �"

World 
coordinate

�&'

Θ)

�*

�*

Target 
position

�*

Gripper’s
coordinate

�+'
�*

�*�*
�*

(a) Three sequences of modular tasks to reach a target position dT .

�"

�"

�"

�"

�"
�"

�"

�"

Target 
orientation 1

Pouring region

�"

�"

�"

�"
�"

�"

�"
�"

Target 
orientation 2

Pouring region

(b) Sequences of modular tasks to reach two target orientations
dR1

, dR2
for a pouring task.

Fig. 2: Example sequences of modular tasks to (a): reach a

target position dT , (b): pour liquid within a target region. The

relevant modular tasks to reach the target are summarized

below each sequence.

where the multiplication is defined as the translation/rotation

in the direction of the corresponding modular task.

If dxW
, dyW

, dzW 6= 0, the relevant modular tasks RSTi

for the corresponding sequence STi
, i = 1, 2, 3 are:

RST1
= {TTz

, TTx
, TTy

},

RST2
= {TTz

, TRz
, TTy

},

RST3
= {TTz

, TRz
, TTx

}.

(7)

A rotation task is followed when the transportation task

is executed. A desired orientation dR = [θx, θy, θz]
T can be

reached through three movements, where each of them is a

rotation around one of the x, y, z-axes. Therefore, dR can

be reached through the task sequence SR:

SR = {θzTRz
, θyTRy

, θxTRx
}. (8)

Partial terms of dR can be zero for different rotation tasks,

e.g. to pour liquid from a container for a target pouring

region. Two desired orientations dR1
= [0, θy1

, θz1 ]
T and

dR2
= [θx2

, 0, θz2 ]
T are typically used for such tasks, as

illustrated in Fig. 2(b). The sequences SR1,2
and the relevant

modular tasks RSR1,2
to reach the orientations are:

SR1
= {θz1TRz

, θy1
TRy

},RSR1
= {TRz

, TRy
},

SR2
= {θz2TRz

, θx2
TRx

},RSR2
= {TRz

, TRx
}.

(9)

The main task will be estimated to be successful, if the

following conditions hold:

1. The desired position dT and orientation dR can be

reached through a sequence of the six motion tasks

{ST ,SR}.

2. Tholding and all the relevant motion tasks {RST
,RSR

}
of the chosen sequence are inferred to succeed.

Moreover, the relevance of the modular tasks may be

further improved with human hints. For instance, in an

industry environment or a tele-operation scenario, the human

operator can remove the holding task when the objects are

deformable and non-fragile, such as sponges or soft toys.

The false negatives can thereby be further reduced and

unnecessary grasp adaptations can be avoided.

IV. DATA ACQUISITION

A. Hardware setup

The hardware setup used for the data acquisition is shown

in Fig. 3. We use a Schunk parallel gripper, which is

mounted on a KUKA lightweight robot arm. We attach an

Intel®RealSenseTM SR300 RGBD camera on top of the

gripper to localize the object and to estimate the object

size directly from the captured point cloud. We apply the

statistical outlier removal from the Point Cloud Library

(PCL) [24] to remove noise. A Weiss Robotics WTS tactile

sensor [25] with 14 × 6 taxels is mounted on one gripper

finger, where the size of each taxel is 3.4 mm × 3.4 mm. In

addition, we cover both fingers with a thin layer of rubber

sheet to smooth the surface of the tactile sensor and to

increase the grasp stability.

B. Data collection

We describe the grasp strategy to collect data, including

the approach vectors, the grasping locations, and the grasp

forces. To reduce the space of possible grasping postures, the

object shape can be represented with shape primitives [26],

[27]. In this work, we estimate the three-dimensional object

size from the point cloud and approximate it with a cuboid.

When collecting data for each object, we use two approach

directions ~a1 and ~a2, which are perpendicular to the planes

of both sides of the cuboid, respectively. For each approach

direction, NG locations are equally spread vertically along

the object.

To collect data for each object, we select a set of NF

grasping forces F = {F1, . . . , FNF
} to squeeze each grasp

location. Each object has an individual set of NF grasp

forces. However, the ratio ξ between each grasp force and

the mass of the object is a constant over all NO objects,

where the mass is estimated by the volume of the cuboid

multiplied by the water density. This implies that for the i-

th object with the mass mi, the set of grasp forces F i
j with

j = 1, . . . , NF is computed by:

F i
j

mi
= ξj , ∀i = 1, . . . , NO, where ξj are constants. (10)

The grasp forces are determined such that the classifier for

grasp stability is invariant to the object weight. The equally



Fig. 3: Our hardware setup includes a parallel gripper, a

RGBD camera, and a tactile sensor, which provides a 14×6

2D pressure array.

scaled forces are used for force adaptation as well. When

a grasp is predicted to be unstable, the force with the next

larger scale will be applied.

Finally, when the gripper has reached a grasp location, the

fingers are closed until the planned grasp force is applied.

The data including the grasp location, object deformation and

the tactile sensor readings are recorded prior to the execution

of each modular task.

To label the grasp data, the six motion tasks are evaluated

separately by moving the arm accordantly with a maximum

speed after reaching the planned grasp. However, the object is

first lifted along the z-axis prior to each movement, such that

no support-force acts on the object during the manipulation.

Each motion task has an individual moving range due to the

limited workspace, where the translation along the x, y-axes

are within [−0.5m, 0.5m], the range for lifting the object

is [0.0m, 0.7m]. The rotation around the x, z-axes is within

[−90◦, 90◦], while the range of the rotation around the y-axis

is [0, 90◦].

The task Tholding uses the data with a grasp force to predict

the success for the force with the next larger scale in the set

{F1, . . . , FNF
}. Therefore, the set of grasp forces for the

Tholding is {F0, F1, . . . , FNF−1}, where F0 = 0.5 ∗ F1.

C. Feature representation

The features used in this work are the grasping location H ,

the object deformation D, and analytical features extracted

from the tactile sensor readings X .

The grasping location Hk of the observation k is computed

by the center location of two fingertips in the object-centered

coordinate system and normalized by dividing it by the object

height, such that it becomes invariant to the object scale.

The object deformation Dk of the k-th observation is

computed by:

Dk =
Lk
S − Lk

E

Lk
S

, (11)

where Lk
S is the start grasp length of the gripper and is

recorded when both fingers and the object are just in contact.

Lk
E is the end grasp length when the contact force reached

the planned force. The deformation is normalized by dividing

it by Lk
S , since it should be relative to the original length of

the object at this location. The proposed analytical features

Fig. 4: Selected objects for the experiments, including rigid

objects, plastic cups, non-fragile objects, and plastic bottles.

The bottles with open and close states are marked with a

star. The dashed box marks the objects for testing.

extracted from the tactile sensor readings are described in

Sec. III-A.

Similar to [2], we normalize the features to zero-mean and

unit standard deviation, with the exception of the grasping

location and the friction-weighted pressure center, since they

have a fixed range.

Other methods for dimensionality reduction of the tactile

sensor readings exist, such as principal component analysis

(PCA) applied in [4] and the image moments applied in

[1], [2], [5], [9]–[11]. We compare the proposed analytical

features to these two methods. Eight principal components

are used in the experiments, which explain ca. 90% of the

data. The image moments mp,q for the tactile sensor readings

are computed by:

mp,q =

Sx
∑

x=1

Sy
∑

y=1

xpyqρxy. (12)

We use the image moments up to order two, which means

(p+q) ∈ {0, 1, 2}. Therefore, there are six moments in total.

V. EXPERIMENTS AND RESULTS

A. Experimental setup

We evaluate two aspects of the proposed approach: the

classification performance for each modular task with the

proposed feature set and the prediction result for the main

tasks with and without dividing the training task into modular

ones.

We select 21 objects for the experiment, as summarized in

Fig. 4, including rigid objects, plastic cups, plastic bottles,

and deformable non-fragile objects. The bottles that have

two states, open and closed, are marked with a star in Fig.

4. The plastic cups and bottles are filled with liquid, which

are covered with a plastic material on the top during the

experiment, such that the liquid is able to overflow, but

will not destroy the electrical devices. The holding task

is considered successful, when the bottles are closed. It is

labeled as a failure, when the objects are damaged or the

liquid overflows with a planned grasp force.

Two grasp forces are selected for the experiment. The

ratios ξ1, ξ2 between each force and the estimated mass of

the object are 10 and 60, which are determined based on
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(c) The rotational motion tasks.

Fig. 5: The out-of-bag (OOB) error for five sets of features for seven modular tasks. Feature set 5 (proposed) achieves the

lowest OOB error for all tasks. Large improvements can be found for translational modular tasks and the task TRx
.

TABLE I: Comparison of the prediction error for seven modular tasks and the average error for all tasks.

Tholding TTx
TTy

TTz
TRx

TRy
TRz

All 7 Tasks

mean std mean std mean std mean std mean std mean std mean std mean

Set 3 0.4 0.370 0.188 0.132 0.189 0.136 0.219 0.160 0.225 0.100 0.274 0.285 0.181 0.144 0.2394

Set 4 0.370 0.299 0.200 0.146 0.202 0.129 0.224 0.148 0.280 0.110 0.320 0.267 0.177 0.122 0.2533

Set 5 0.410 0.393 0.178 0.151 0.135 0.129 0.166 0.150 0.160 0.119 0.175 0.101 0.151 0.132 0.1964

an overestimated (≈ 1) and an underestimated (≈ 0.16)

friction coefficient. Each object is grasped with two approach

vectors. For each approach vector, 6-12 locations are grasped

depending on the height of the object. Each location is

grasped with two forces for each of the motion tasks and

three forces for the holding task, where the ratio ξ0 for the

smallest force F0 is 5. This force is used to predict whether

the holding task will succeed when the grasp force F1 with

the ratio ξ1 = 10 is applied. The grasp data for the plastic

containers, that are marked with a star in Fig. 4, are collected

twice for its open and closed state.

B. Prediction results for modular tasks

To infer the success of modular tasks, we train 1000

decision trees for each task. We compare the proposed

analytical features extracted from the tactile sensor readings

with features based on principle components and image

moments as introduced in Section IV-C. The forests are

trained with the data of all 21 objects and we find the

prediction error over the out-of-bag (OOB) data, which is

defined as OOB error in this work.

Table II summarized the five combinations of features that

are evaluated in our experiments.

TABLE II: Considered feature sets for the OOB error com-

parison. Feature set 5 is proposed.

Feature set Basic features Tactile sensor readings

1 H /

2 H ,D /

3 H ,D 6 image moments

4 H ,D 8 principle components

5 H ,D C,p, f̃ , τ̃ , w

The OOB error for the seven modular tasks is shown

in Fig. 5. The proposed feature set yields a lower OOB

error for all the tasks. Large improvements can be found for

translational modular tasks TTx
, TTy

, TTz
and the task TRx

.

Next, we select 13 objects for training and 8 for testing

to compare the feature sets 3-5 in Table II. The objects

for testing are marked with a dashed box in Fig. 4. Table I

summarizes the mean and the standard deviation (std) of the

prediction error for each modular task and the average error

for all tasks. We are able to achieve a prediction accuracy

of 80.36% with the proposed features extracted from the

tactile sensor readings. The prediction error is lowered by up

to 5.69% compared to other feature sets. The error for the

holding task is high compared to other tasks. In particular,

the false negatives of the pink cup (a soft toy) in Fig. 4 is

100%, due to the excessive deformation caused by the grasp.

When manipulating such objects, a prior-knowledge about

whether the object is fragile, can avoid the false negatives.

The experiment is described in Section V-C.

Finally, we analyze the importance of each proposed

feature for two selected modular tasks in Fig. 6(a) and

(b). The importance is measured by the increment of the

prediction error, when permuting the values of each feature.

The object deformation carries a high importance for the

holding task, as shown in Fig. 6(a). The work w is the

second most important feature, since it indirectly measures

the object deformation. Fig. 6(b) shows that the grasping

location is essential for the lifting task TTz
. The friction-

weighted pressure center p on the y-axis py is important for

the task as well, since it encodes the object local geometry.

Two grasp examples are illustrated in Fig. 6(c) and (d) with

an enlarged view of each contact and the corresponding

tactile sensor reading. Fig. 6(c) is a successful grasp for a

lifting task while Fig. 6(d) fails. The pressure center in Fig.

6(c) is on the upper part of the reading, which indicates a

lower value of py . It implies that the contact area of the
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Fig. 6: Importance plot of features for (a) the modular task Tholding and (b) the lifting task TTz
. The vertical location py

of the friction-weighted pressure center encodes object local geometry and therefore carries a high importance for the TTz
.

Fig. (c) and (d) show a successful and a failed grasp for the TTz
with an enlarged view of the contact and the tactile sensor

readings. If the center is on the upper part of the tactile image, the lift-up task is likely to succeed.
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(a) Manipulation tasks.

Succeeded after 2 regrasps and 3 force 

adaptations

Force adaptation

Succeeded after 3 regrasps and 4 force 

adaptations

Failed after 5 regrasps

(b) Grasp processes without modular tasks.

Selected sequence:

Selected sequence:

Selected sequence:

is removed
with a human hint.

(c) Grasp processes with modular tasks (proposed).

Fig. 7: Grasp processes for three example manipulation tasks. The considered sequences of modular tasks SR,ST can be

found in Fig. 2. With the proposed method, much less grasp adaptations are required to successfully execute the manipulation

tasks, as depicted in (c). Note that for the last main task, Tholding is predicted to fail for all grasp locations and forces due

to the excessive deformation. With a prior-knowledge that the object is non-fragile, it can be successfully manipulated with

the proposed method, while the manipulation fails in (b) after all grasp candidates are attempted.

object is wider on the upper part than on the lower part.

Therefore, it is likely that there is a support structure above

the object part that is in contact with the gripper when the

object is lifted.

C. Assessing grasp stability for main tasks

We infer the success of the main manipulation tasks and

the paths for the task execution based on the prediction

results of the modular tasks. We compare the manipulation

process of the proposed approach with the case, where

the model for stability assessment is trained for a fixed

task. In the latter case, the training task is considered as

a sequence of all seven tasks. The success label will only

be true if the whole task sequence can be successfully

executed. Such conservative training process can be expected

to avoid false positives and a failure of the action, when the

new manipulation task is unknown. A preliminary planner

is applied to demonstrate the difference. The object will

be grasped starting the lowest location among the grasp

candidates. If the grasp for the main task is predicted to

be unsuccessful, a grasp force adaptation will be triggered

with a larger force (ξ = 60) used in training. If the task

is further inferred to fail, a higher location will be selected

for a regrasp. The process will be repeated until a feasible

grasp location is detected or all grasp locations are predicted

to fail. The results for three example manipulation tasks are

illustrated in Fig. 7, where the target pose of each task is

manually defined. Without considering modular tasks, the

prediction of the success will only be true for the main task,

if the whole task sequence can succeed, i.e. all modular tasks

are inferred to be successful. Robotic experiments show that



numerous unnecessary grasp force adaptations and regrasps

are avoided with the proposed approach.

VI. CONCLUSION

In this work, we present a learning-based approach for

grasp stability assessment for seven modular tasks includ-

ing a holding task and six motions tasks to manipulate

deformable fragile objects. Our experiments demonstrate that

the average prediction accuracy achieves 80.36% for all

modular tasks. The proposed analytical features extracted

from the tactile sensor readings lower the prediction error up

to 5.69% compared to the classical methods for dimension-

ality reduction, i.e. image moments and principle component

analysis. Furthermore, we show that a manipulation task

can be represented as a sequence of modular tasks and the

stability can be inferred thereby based on the prediction of

relevant modular tasks. We demonstrate that unnecessary

grasp force adaptations and regrasps can be avoided with

the proposed stability assessment for modular tasks.

Limitation analysis: The OOB error and the importance

plots of features suggests that partial modular tasks might

be correlated, such as TTz
, TTy

and TRz
. When collecting

data for these tasks, we observed that the success rates are

similar among them. This may be caused by the limited

acceleration of the three movements. Therefore, the division

of the modular tasks needs to be further investigated. In

addition, the labeling of the modular tasks are under the

restriction that the approach vectors of the grasps are from

the side. The prediction results might differ when the grasps

are from the top. Moreover, further analysis is required to

evaluate whether a complicated manipulation task can be

guaranteed to be successful, when all relevant modular tasks

succeeded. To investigate this, analytical approaches can be

used to determine the required force and torque components

for the main and modular tasks. Finally, the path to reach the

target pose is restricted by the prediction results of the six

motion tasks. A probabilistic framework can be investigated

to combine the stability assessment with path planning. The

success rate of each path, which is provided by, e.g., inverse

kinematics can be estimated. The optimal path can be thereby

selected for safe manipulation.

Future work: In addition to addressing the aforemen-

tioned limitations, we will consider more modular tasks,

such as accelerations and decelerations, and more grasps to

further investigate their dependencies. We will combine the

grasp stability assessment with a more sophisticated grasp

planner and grasp adaptation strategies for a more complete

manipulation process.
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